To obtain therapeutically effective new antibiotics, we first searched for bacterial culture supernatants with antimicrobial activity in vitro and then performed a secondary screening using the silkworm infection model. Through further purification of the in vivo activity, we obtained a compound with a previously uncharacterized structure and named it 'lysocin E'. Lysocin E interacted with menaquinone in the bacterial membrane to achieve its potent bactericidal activity, a mode of action distinct from that of any other known antibiotic, indicating that lysocin E comprises a new class of antibiotic. This is to our knowledge the first report of a direct interaction between a small chemical compound and menaquinone that leads to bacterial killing. Furthermore, lysocin E decreased the mortality of infected mice. To our knowledge, lysocin E is the first compound identified and purified by quantitative measurement of therapeutic effects in an invertebrate infection model that exhibits robust in vivo effects in mammals.
Infectious diseases threaten global health due to the ability of microbes to acquire resistance against clinically used antibiotics. Continuous discovery of antibiotics with a novel mode of action is thus required. Actinomycetes and fungi are currently the major sources of antibiotics, but the decreasing rate of discovery of novel antibiotics suggests that the focus should be changed to previously untapped groups of microbes. Lysobacter species have a genome size of ~6 Mb with a relatively high G + C content of 61-70 % and are characterized by their ability to produce peptides that damage the cell walls or membranes of other microbes. Genome sequence analysis revealed that each Lysobacter species has gene clusters for the production of 12-16 secondary metabolites, most of which are peptides, thus making them 'peptide production specialists'. Given that the number of antibiotics isolated is much lower than the number of gene clusters harbored, further intensive studies of Lysobacter are likely to unearth novel antibiotics with profound biomedical applications. In this review, we summarize the structural diversity, activity and biosynthesis of lysobacterial antibiotics and highlight the importance of Lysobacter species for antibiotic production.
The demand for novel antibiotics to combat the global spread of multi drug-resistant pathogens continues to grow. Pathogenic bacteria and fungi that cause fatal human infections can also kill silkworms and the infected silkworms can be cured by the same antibiotics used to treat infections in the clinic. As an invertebrate model, silkworm model is characterized by its convenience, low cost, no ethical issues. The presence of conserved immune response and similar pharmacokinetics compared to mammals make silkworm infection model suitable to examine the therapeutic effectiveness of antimicrobial agents. Based on this, we utilized silkworm bacterial infection model to screen the therapeutic effectiveness of various microbial culture broths and successfully identified a therapeutically effective novel antibiotic, lysocin E, which has a novel mode of action of binding to menaquinone, thus leading to membrane damage and bactericidal activity. The similar approach to screen potential antibiotics resulted in the identification of other therapeutically effective novel antibiotics, such as nosokomycin and ASP2397 (VL-2397). In this regard, we propose that the silkworm antibiotic screening model is very effective for identifying novel antibiotics. In this review, we summarize the advantages of the silkworm model and propose that the utilization of silkworm infection model will facilitate the discovery of novel therapeutically effective antimicrobial agents.
WAP-8294A2 (lotilibcin, 1) is a potent antibiotic with superior in vivo efficacy to vancomycin against methicillin-resistant Staphylococcus aureus (MRSA). Despite the great medical importance, its molecular mode of action remains unknown. Here we report the total synthesis of complex macrocyclic peptide 1 comprised of 12 amino acids with a β-hydroxy fatty-acid chain, and its deoxy analogue 2. A full solid-phase synthesis of 1 and 2 enabled their rapid assembly and the first detailed investigation of their functions. Compounds 1 and 2 were equipotent against various strains of Gram-positive bacteria including MRSA. We present evidence that the antimicrobial activities of 1 and 2 are due to lysis of the bacterial membrane, and their membrane-disrupting effects depend on the presence of menaquinone, an essential factor for the bacterial respiratory chain. The established synthetic routes and the menaquinone-targeting mechanisms provide valuable information for designing and developing new antibiotics based on their structures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.