Recent advances in molecular engineering and synthetic biology have made it possible for biomolecular and cell-based therapies to provide highly specific disease treatment. However, both the ability to spatially target the action of such therapies, and their range of effects on the target tissue remain limited. Here we show that biomolecules and cells can be engineered to deliver potent mechanical effects at specific locations inside the body under the direction of focused ultrasound. This capability is based on gas vesicles, a unique class of air-filled protein nanostructures derived from buoyant photosynthetic microbes. We show that lowfrequency ultrasound can convert these nanoscale biomolecules into micron-scale cavitating bubbles, as demonstrated with acoustic measurements and ultrafast optical microscopy. This allows gas vesicles targeted to cell-surface receptors to serve as remotely detonated cell-killing agents. In addition, it allows cells genetically engineered to express gas vesicles to be triggered with ultrasound to lyse and release therapeutic payloads. We demonstrate these capabilities in vitro, in cellulo, and in vivo. This technology equips biomolecular and cellular therapeutics with unique capabilities for spatiotemporal control and mechanical action.
Extremity skeletal muscle injuries result in substantial disability. Current treatments fail to recoup muscle function, but properly designed and implemented tissue engineering and regenerative medicine techniques can overcome this challenge. In this study, a nanoengineered, growth factor-eluting bioink that utilizes Laponite nanoclay for the controlled release of vascular endothelial growth factor (VEGF) and a GelMA hydrogel for a supportive and adhesive scaffold that can be crosslinked in vivo is presented. The bioink is delivered with a partially automated handheld printer for the in vivo formation of an adhesive and 3D scaffold. The effect of the controlled delivery of VEGF alone or paired with adhesive, supportive, and fibrilar architecture has not been studied in volumetric muscle loss (VML) injuries. Upon direct in vivo printing, the constructs are adherent to skeletal muscle and sustained release of VEGF. The in vivo printing of muscle ink in a murine model of VML injury promotes functional muscle recovery, reduced fibrosis, and increased anabolic response compared to untreated mice. The in vivo construction of a therapeutic-eluting 3D scaffold paves the way for the immediate treatment of a variety of soft tissue traumas.
Recent advances in molecular engineering and synthetic biology have made it possible for biomolecular and cell-based therapies to provide highly specific disease treatment. However, both the ability to spatially target the action of such therapies, and their range of effects on the target tissue remain limited. Here we show that biomolecules and cells can be engineered to deliver potent mechanical effects at specific locations inside the body under the direction of focused ultrasound. This capability is based on gas vesicles, a unique class of air-filled protein nanostructures derived from buoyant photosynthetic microbes. We show that lowfrequency ultrasound can convert these nanoscale biomolecules into micron-scale cavitating bubbles, as demonstrated with acoustic measurements and ultrafast optical microscopy. This allows gas vesicles targeted to cell-surface receptors to serve as remotely detonated cell-killing agents. In addition, it allows cells genetically engineered to express gas vesicles to be triggered with ultrasound to lyse and release therapeutic payloads. We demonstrate these capabilities in vitro, in cellulo, and in vivo. This technology equips biomolecular and cellular therapeutics with unique capabilities for spatiotemporal control and mechanical action.
Loss of muscle mass and strength with aging, also termed sarcopenia, results in a loss of mobility and independence. Exercise, particularly resistance training, has proven to be beneficial in counteracting the aging-associated loss of skeletal muscle mass and function. However, the anabolic response to exercise in old age is not as robust, with blunted improvements in muscle size, strength, and function in comparison to younger individuals. This review provides an overview of several physiological changes which may contribute to age-related loss of muscle mass and decreased anabolism in response to resistance training in the elderly. Additionally, the following supplemental therapies with potential to synergize with resistance training to increase muscle mass are discussed: nutrition, creatine, anti-inflammatory drugs, testosterone, and growth hormone (GH). Although these interventions hold some promise, further research is necessary to optimize the response to exercise in elderly patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.