Photocages are light-sensitive chemical protecting groups that give investigators control over activation of biomolecules using targeted light irradiation. A compelling application of far-red/near-IR absorbing photocages is their potential for deep tissue activation of biomolecules and phototherapeutics. Toward this goal, we recently reported BODIPY photocages that absorb near-IR light. However, these photocages have reduced photorelease efficiencies compared to shorter-wavelength absorbing photocages, which has hindered their application. Because photochemistry is a zero-sum competition of rates, improvement of the quantum yield of a photoreaction can be achieved either by making the desired photoreaction more efficient or by hobbling competitive decay channels. This latter strategy of inhibiting unproductive decay channels was pursued to improve the release efficiency of long-wavelength absorbing BODIPY photocages by synthesizing structures that block access to unproductive singlet internal conversion conical intersections, which have recently been located for simple BODIPY structures from excited state dynamic simulations. This strategy led to the synthesis of new conformationally restrained boron-methylated BODIPY photocages that absorb light strongly around 700 nm. In the best case, a photocage was identified with an extinction coefficient of 124000 M −1 cm −1 , a quantum yield of photorelease of 3.8%, and an overall quantum efficiency of 4650 M −1 cm −1 at 680 nm. This derivative has a quantum efficiency that is 50-fold higher than the best known BODIPY photocages absorbing >600 nm, validating the effectiveness of a strategy for designing efficient photoreactions by thwarting competitive excited state decay channels. Furthermore, 1,7-diaryl substitutions were found to improve the quantum yields of photorelease by excited state participation and blocking ion pair recombination by internal nucleophilic trapping. No cellular toxicity (trypan blue exclusion) was observed at 20 μM, and photoactivation was demonstrated in HeLa cells using red light.
BODIPY-based photocages release substrates by excitation with wavelengths in the visible to near-IR regions. The recent development of more efficient BODIPY photocages spurred us to evaluate the scope and efficiency of these second-generation boron-methylated green-light and red-light-absorbing BODIPY photocages. Here, we show that these more photosensitive photocages release amine, alcohol, phenol, phosphate, halides, and carboxylic acid derivatives with much higher quantum yields than first-generation BODIPY photocages and excellent chemical yields. Chemical yields are near-quantitative for the release of all functional groups except the photorelease of amines, which react with concomitantly photogenerated singlet oxygen. In these cases, high chemical yields for photoreleased amines are restored by irradiation under an inert atmosphere. The photorelease quantum yield has a weak relationship with the leaving group pK a of the green-absorbing BODIPY photocages but little relationship with the red-absorbing derivatives, suggesting that factors other than leaving group quality impact the quantum yield. For the photorelease of alcohols, in all cases a carbonate linker (that loses CO2 upon photorelease) significantly increases both the quantum yield and the chemical yield compared to those for direct photorelease via the ether.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.