The balance between accumulation of stress-induced polyamines and reactive oxygen species (ROS) is arguably a critical factor in plant tolerance to salt stress. Polyamines are compounds, which accumulate in plants under salt stress and help maintain cellular ROS homeostasis. In this review we first outline the role of polyamines in mediating salt stress responses through their modulation of redox homeostasis. The two proposed roles of polyamines in regulating ROS-as antioxidative molecules and source of ROS synthesis-are discussed and exemplified with recent studies. Second, the proposed function of polyamines as modulators of ion transport is discussed in the context of plant salt stress. Finally, we highlight the apparent connection between polyamine accumulation and programmed cell death induction during stress. Thus, polyamines have a complex functional role in regulating cellular signaling and metabolism during stress. By focusing future efforts on how polyamine accumulation and turnover is regulated, research in this area may provide novel targets for developing stress tolerance.
The specific genetic changes through which plants adapt to the multitude of environmental stresses are possible because of the molecular regulations in the system. These intricate regulatory mechanisms once unveiled will surely raise interesting questions. Polyamines and hydrogen peroxide have been suggested to be important signaling molecules during biotic and abiotic stresses. Hydrogen peroxide plays a versatile role from orchestrating physiological processes to stress response. It helps to achieve acclimatization and tolerance to stress by coordinating intra-cellular and systemic signaling systems. Polyamines, on the other hand, are low molecular weight polycationic aliphatic amines, which have been implicated in various stress responses. It is quite interesting to note that both hydrogen peroxide and polyamines have a fine line of inter-relation between them since the catabolic pathways of the latter releases hydrogen peroxide. In this review we have tried to illustrate the roles and their multifaceted functions of these two important signaling molecules based on current literature. This review also highlights the fact that over accumulation of hydrogen peroxide and polyamines can be detrimental for plant cells leading to toxicity and pre-mature cell death.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.