Auditory nerve fibers (ANFs) innervating the same inner hair cell (IHC) may have identical frequency tuning but different sound response properties. In cat and guinea pig, ANF response properties correlate with afferent synapse morphology and position on the IHC, suggesting a causal structure-function relationship. In mice, this relationship has not been fully characterized. Here we measured the emergence of synaptic morphological heterogeneities during maturation of the C57BL/6J mouse cochlea by comparing postnatal day 17 (p17, ∼3 days after hearing onset) with p34, when the mouse cochlea is mature. Using serial block face scanning electron microscopy and three-dimensional reconstruction we measured the size, shape, vesicle content, and position of 70 ribbon synapses from the mid-cochlea. Several features matured over late postnatal development. From p17 to p34, presynaptic densities (PDs) and post-synaptic densities (PSDs) became smaller on average (PDs: 0.75 to 0.33; PSDs: 0.58 to 0.31 μm2) and less round as their short axes shortened predominantly on the modiolar side, from 770 to 360 nm. Membrane-associated synaptic vesicles decreased in number from 53 to 30 per synapse from p17 to p34. Anatomical coupling, measured as PSD to ribbon distance, tightened predominantly on the pillar side. Ribbons became less spherical as long-axes lengthened only on the modiolar side of the IHC, from 372 to 541 nm. A decreasing gradient of synaptic ribbon size along the modiolar-pillar axis was detected only at p34 after aligning synapses of adjacent IHCs to a common reference frame (median volumes in nm3 × 106: modiolar 4.87; pillar 2.38). The number of ribbon-associated synaptic vesicles scaled with ribbon size (range 67 to 346 per synapse at p34), thus acquiring a modiolar-pillar gradient at p34, but overall medians were similar at p17 (120) and p34 (127), like ribbon surface area (0.36 vs. 0.34 μm2). PD and PSD morphologies were tightly correlated to each other at individual synapses, more so at p34 than p17, but not to ribbon morphology. These observations suggest that PDs and PSDs mature according to different cues than ribbons, and that ribbon size may be more influenced by cues from the IHC than the surrounding tissue.
Cochlear sound encoding depends on α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors (AMPARs), but reliance on specific pore-forming subunits is unknown. With 5-week-old male C57BL/6J Gria3 knockout mice (i.e., subunit GluA3KO) we determined cochlear function, synapse ultrastructure and AMPAR molecular anatomy at ribbon synapses between inner hair cells (IHCs) and spiral ganglion neurons. GluA3KO and wild-type (GluA3WT) mice reared in ambient sound pressure level (SPL) of 55-75 dB had similar auditory brainstem response (ABR) thresholds, wave-1 amplitudes and latencies. Postsynaptic densities (PSDs), presynaptic ribbons, and synaptic vesicle sizes were all larger on the modiolar side of the IHCs from GluA3WT, but not GluA3KO, demonstrating GluA3 is required for modiolar-pillar synapse differentiation. Presynaptic ribbons juxtaposed with postsynaptic GluA2/4 subunits were similar in quantity, however, lone ribbons were more frequent in GluA3KO and GluA2-lacking synapses were observed only in GluA3KO. GluA2 and GluA4 immunofluorescence volumes were smaller on the pillar side than the modiolar side in GluA3KO, despite increased pillar-side PSD size. Overall, the fluorescent puncta volumes of GluA2 and GluA4 were smaller in GluA3KO than GluA3WT. However, GluA3KO contained less GluA2 and greater GluA4 immunofluorescence intensity relative to GluA3WT (3-fold greater mean GluA4:GluA2 ratio). Thus, GluA3 is essential in development, as germline disruption of Gria3 caused anatomical synapse pathology before cochlear output became symptomatic by ABR. We propose the hearing loss in older male GluA3KO mice results from progressive synaptopathy evident in 5-week-old mice as decreased abundance of GluA2 subunits and an increase in GluA2-lacking, GluA4-monomeric Ca2+-permeable AMPARs.
The encoding of acoustic signals in the cochlea depends on α-amino-3-hydroxy-5-methyl-4- isoxazole propionic acid receptors (AMPARs), but relatively little is known about their reliance on specific pore-forming subunits. With 5-week-old male GluA3KO mice, we determined cochlear function, synapse ultrastructure, and AMPAR subunit molecular anatomy at ribbon synapses between inner hair cells (IHCs) and spiral ganglion neurons (SGNs). GluA3KO and wild-type (GluA3WT) mice reared in ambient sound pressure level (SPL) of 55-75 dB had similar ABR thresholds, wave-1 amplitudes, and latencies. Ultrastructurally, the IHC modiolar-pillar differences in presynaptic ribbon size and shape, and synaptic vesicle size seen in GluA3WT were diminished or reversed in GluA3KO. The quantity of paired synapses (presynaptic ribbons juxtaposed with postsynaptic GluA2 and GluA4) was similar, however, GluA2-lacking synapses (ribbons paired with GluA4 but not GluA2) were observed only in GluA3KO. SGNs of GluA3KO mice had AMPAR arrays of smaller overall volume, containing less GluA2 and greater GluA4 immunofluorescence intensity relative to GluA3WT (3-fold difference in mean GluA4:GluA2 ratio). The expected modiolar-pillar gradient in ribbon volume was observed in IHCs of GluA3WT but not GluA3KO. Unexpected modiolar-pillar gradients in GluA2 and GluA4 volume were present in GluA3KO. GluA3 is essential to the morphology and molecular composition of IHC-ribbon synapses. We propose the hearing loss seen in older male GluA3KO mice results from progressive synaptopathy evident in 5-week-old mice as increased abundance of GluA2-lacking, GluA4 monomeric, Ca2+- permeable AMPARs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.