Adversarial training (AT) methods have been found to be effective against adversarial attacks on deep neural networks. Many variants of AT have been proposed to improve its performance. Pang et al. [1] have recently shown that incorporating hypersphere embedding (HE) into the existing AT procedures enhances robustness. We observe that the existing AT procedures are not designed for the HE framework, and thus fail to adequately learn the angular discriminative information available in the HE framework. In this paper, we propose integrating HE into AT with regularization terms that exploit the rich angular information available in the HE framework. Specifically, our method, termed angular-AT, adds regularization terms to AT that explicitly enforce weight-feature compactness and inter-class separation; all expressed in terms of angular features. Experimental results show that angular-AT further improves adversarial robustness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.