Patatin-like phospholipases (PNPLAs) are highly conserved enzymes of prokaryotic and eukaryotic organisms with major roles in lipid homeostasis. The genome of the malaria parasite Plasmodium falciparum encodes four putative PNPLAs with predicted functions during phospholipid degradation. We here investigated the role of one of the plasmodial PNPLAs, a putative PLA 2 termed PNPLA1, during blood stage replication and gametocyte development. PNPLA1 is present in the asexual and sexual blood stages and here localizes to the cytoplasm. PNPLA1-deficiency due to gene disruption or conditional gene-knockdown had no effect on intraerythrocytic growth, gametocyte development and gametogenesis. However, parasites lacking PNPLA1 were impaired in gametocyte induction, while PNPLA1 overexpression promotes gametocyte formation. The loss of PNPLA1 further leads to transcriptional downregulation of genes related to gametocytogenesis, including the gene encoding the sexual commitment regulator AP2-G. Additionally, lipidomics of PNPLA1-deficient asexual blood stage parasites revealed overall increased levels of major phospholipids, including phosphatidylcholine (PC), which is a substrate of PLA 2 . PC synthesis is known to be pivotal for erythrocytic replication, while the reduced availability of PC precursors drives the parasite into gametocytogenesis; we thus hypothesize that the higher PC levels due to PNPLA1-deficiency prevent the blood stage parasites from entering the sexual pathway. K E Y W O R D Smalaria, Plasmodium falciparum, gametocyte induction, patatin-like phospholipase, sexual commitment, phosphatidylcholine
Microbiome research is hampered by the fact that many bacteria are still unknown and by the lack of publicly available isolates. Fundamental and clinical research is in need of comprehensive and well-curated repositories of cultured bacteria from the intestine of mammalian hosts. In this work, we expanded the mouse intestinal bacterial collection (www.dsmz.de/miBC) to 212 strains, all publicly available and taxonomically described. This includes the study of strain-level diversity, small-sized bacteria, and the isolation and characterization of the first cultured members of one novel family, 10 novel genera, and 39 novel species. We demonstrate the value of this collection by performing two studies. First, metagenome-educated design of synthetic communities (SYNs) allowed establishing custom strain consortia that reflect different susceptibilities to DSS-induced colitis. Second, nine phylogenetically and functionally diverse species were used to amend the Oligo-Mouse Microbiota (OMM)12 model [Brugiroux et al. 2016 Nat Microbiol]. These strains compensated for differences observed between gnotobiotic OMM12 and specific-pathogen free (SPF) mice at multiple levels, including body composition and immune cell populations (e.g., induction of T-cell subtypes) in the intestine and associated lymphoid tissues. Ready-to-use OMM stocks from this work are available to the community for use in future studies. In conclusion, this work improves our knowledge of gut microbiota diversity in mice and enables functional studies via the modular use of isolates.
Patatin‐like phospholipases (PNPLAs) are highly conserved enzymes of prokaryotic and eukaryotic organisms with major roles in lipid homeostasis. The genome of the malaria parasite Plasmodium falciparum encodes four putative PNPLAs with predicted functions during phospholipid degradation. We here investigated the role of one of the plasmodial PNPLAs, a putative PLA2 termed PNPLA1, during blood stage replication and gametocyte development. PNPLA1 is present in the asexual and sexual blood stages and here localizes to the cytoplasm. PNPLA1‐deficiency due to gene disruption or conditional gene‐knockdown had no effect on intraerythrocytic growth, gametocyte development and gametogenesis. However, parasites lacking PNPLA1 were impaired in gametocyte induction, while PNPLA1 overexpression promotes gametocyte formation. The loss of PNPLA1 further leads to transcriptional down‐regulation of genes related to gametocytogenesis, including the gene encoding the sexual commitment regulator AP2‐G. Additionally, lipidomics of PNPLA1‐deficient asexual blood stage parasites revealed overall increased levels of major phospholipids, including phosphatidylcholine (PC), which is a substrate of PLA2. PC synthesis is known to be pivotal for erythrocytic replication, while the reduced availability of PC precursors drives the parasite into gametocytogenesis; we thus hypothesize that the higher PC levels due to PNPLA1‐deficiency prevent the blood stage parasites from entering the sexual pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.