Three structural isomers of the C2H4O2 molecule, namely, methyl formate (MF; HCOOCH3), acetic acid (CH3COOH), and glycolaldehyde (HOCH2CHO), have attracted considerable attention as targets for understanding pathways toward molecular complexity in the interstellar medium (ISM). Among these isomers, MF is decisively abundant in various astronomical objects. For various formation pathways of MF, surface reactions on cosmic dust would play an important role. However, when compared to observations, the formation of MF has been found to be relatively inefficient in laboratory experiments in which methanol (CH3OH)-dominant ices were processed by ultraviolet photons and cosmic-ray analogs. Here, we show experimental results on the effective formation of MF by the photolysis of CH3OH on water ice at 10 K. We found that the key parameter leading to the efficient formation of MF is the supply of OH radicals by the photolysis of H2O, which significantly differs from CH3OH-rich experimental conditions. Moreover, using an ultrahigh-sensitivity surface analysis method, we succeeded in constraining the decisive formation pathway of MF via the photolysis of methoxymethanol (MM; CH3OCH2OH), which would improve our current understanding of chemical evolution in the ISM.
The existence of molecular orientational order in nanometer-thick films of molecules has long been implied by surface potential measurements. However, direct quantitative determination of the molecular orientation is challenging, especially for metastable amorphous thin films at low temperatures. This study quantifies molecular orientation in amorphous N 2 O at 6 K using infrared multiple-angle incidence resolution spectrometry (IR-MAIRS). The intensity ratio of the weak antisymmetric stretching vibration band of the 14 N 15 NO isotopomer between the in-plane and out-of-plane IR-MAIRS spectra provides an average molecular orientation angle of 65°from the surface normal. No discernible change is observed in the orientation angle when a different substrate material is used (Si and Ar) at 6 K or the Si substrate temperature is changed in the range of 6−14 K. This suggests that the transient mobility of N 2 O during physisorption is key in governing the molecular orientation in amorphous N 2 O.
The surface of most aerial plant organs is covered with the cuticle, a membrane consisting of a variety of organic compounds, including waxes, cutin (a polyester) and polysaccharides. The cuticle serves as the multifunctional interface between the plant and the environment, and plays a major role in protecting plants against various environmental stress factors. Characterization of the molecular arrangements in the intact cuticle is critical for the fundamental understanding of its physicochemical properties; however, this analysis remains technically challenging. Here, we describe the nondestructive characterization of the intact cuticle of Brassica oleracea L. leaves using polarization modulation-infrared (IR) reflection-absorption spectroscopy (PM-IRRAS). PM-IRRAS has a probing depth of less than several hundreds of nanometers, and reveals the crystalline structure of the wax covering the cuticle surface (epicuticular wax) and the nonhydrogen-bonding character of cutin. Combined analysis using attenuated total reflection-IR spectra suggested that hemicelluloses xylan and xyloglucan are present in the outer cuticle region close to the epicuticular wax, whereas pectins are dominant in the inner cuticle region (depth of ≤2 μm). PM-IRRAS can also determine the average orientation of the cuticular molecules, as indicated by the positive and negative spectral peaks. This unique advantage reveals the orientational order in the intact cuticle; the hydrocarbon chains of the epicuticular wax and cutin and the backbones of hemicelluloses are oriented perpendicular to the leaf surface. PM-IRRAS is a versatile, informative and easy-to-use technique for studying plant cuticles because it is nondestructive and does not require sample pretreatment and background measurements.
A systematic survey was performed for binding energy and reaction path search calculations on ice. ONIOM(⍵B97X-D/Def2-TZVP:AMOEBA09) calculations suggested a range of binding energies for CH2OH radical (0.29 – 0.69 eV)...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.