With the advent of the Heliophysics/Geospace System Observatory (H/GSO), a complement of multi-spacecraft missions and ground-based observatories to study the space environment, data retrieval, analysis, and visualization of space physics data can be daunting. The Space Physics Environment Data Analysis System (SPEDAS), a grass-roots software development platform ( www.spedas.org ), is now officially supported by NASA Heliophysics as part of its data environment infrastructure. It serves more than a dozen space missions and ground observatories and can integrate the full complement of past and upcoming space physics missions with minimal resources, following clear, simple, and well-proven guidelines. Free, modular and configurable to the needs of individual missions, it works in both command-line (ideal for experienced users) and Graphical User Interface (GUI) mode (reducing the learning curve for first-time users). Both options have “crib-sheets,” user-command sequences in ASCII format that can facilitate record-and-repeat actions, especially for complex operations and plotting. Crib-sheets enhance scientific interactions, as users can move rapidly and accurately from exchanges of technical information on data processing to efficient discussions regarding data interpretation and science. SPEDAS can readily query and ingest all International Solar Terrestrial Physics (ISTP)-compatible products from the Space Physics Data Facility (SPDF), enabling access to a vast collection of historic and current mission data. The planned incorporation of Heliophysics Application Programmer’s Interface (HAPI) standards will facilitate data ingestion from distributed datasets that adhere to these standards. Although SPEDAS is currently Interactive Data Language (IDL)-based (and interfaces to Java-based tools such as Autoplot), efforts are under-way to expand it further to work with python (first as an interface tool and potentially even receiving an under-the-hood replacement). We review the SPEDAS development history, goals, and current implementation. We explain its “modes of use” with examples geared for users and outline its technical implementation and requirements with software developers in mind. We also describe SPEDAS personnel and software management, interfaces with other organizations, resources and support structure available to the community, and future development plans. Electronic Supplementary Material The online version of this article (10.1007/s11214-018-0576-4) contains supplementary material, which is available to authorized users.
The plasmas (electrons and ions) in the inner magnetosphere have wide energy ranges from electron volts to megaelectron volts (MeV). These plasmas rotate around the Earth longitudinally due to the gradient and curvature of the geomagnetic field and by the co-rotation motion with timescales from several tens of hours to less than 10 min. They interact with plasma waves at frequencies of mHz to kHz mainly in the equatorial plane of the magnetosphere, obtain energies up to MeV, and are lost into the ionosphere. In order to provide the global distribution and quantitative evaluation of the dynamical variation of these plasmas and waves in the inner magnetosphere, the PWING project (study of dynamical variation of particles and waves in the inner magnetosphere using ground-based network observations, http://www.isee.nagoya-u.ac.jp/dimr/PWING/) has been carried out since April 2016. This paper describes the stations and instrumentation of the PWING project. We operate all-sky airglow/aurora imagers, 64-Hz sampling induction magnetometers, 40-kHz sampling loop antennas, and 64-Hz sampling riometers at eight stations at subauroral latitudes (~ 60° geomagnetic latitude) in the northern hemisphere, as well as 100-Hz sampling EMCCD cameras at three stations. These stations are distributed longitudinally in Canada, Iceland, Finland, Russia, and Alaska to obtain the longitudinal distribution of plasmas and waves in the inner magnetosphere. This PWING longitudinal network has been developed as a part of the ERG (Arase)-ground coordinated observation network. The ERG (Arase) satellite was launched on December 20, 2016, and has been in full operation since March 2017. We will combine these ground network observations with the ERG (Arase) satellite and global modeling studies. These comprehensive datasets will © The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
[1] We constructed an empirical model of the electron density profile with solar zenith angle (SZA) dependence in the polar cap during geomagnetically quiet periods using 63 months of Akebono satellite observations at solar maximum. The electron density profile exhibits a transition at ∼2000 km altitude only under dark conditions. The electron density and scale height at low altitudes change drastically, by factors of 25 (at 2300 km altitude) and 2.0, respectively, as the SZA increases from 90°to 120°. The SZA dependence of the ion and electron temperatures is also investigated statistically on the basis of data obtained by the Intercosmos satellites and European Incoherent Scatter (EISCAT) Svalbard radar (ESR). A drastic change in the electron temperature occurs near the terminator, similarly to that in the electron density profile obtained by the Akebono satellite. The sum of the ion and electron temperatures obtained by the ESR (∼6500 K at ∼1050 km altitude under sunlit conditions and ∼3000 K at ∼750 km altitude under dark conditions) agrees well with the scale height at low altitudes obtained from the Akebono observations, assuming that the temperature is constant and that O + ions are dominant. Comparisons between the present statistical results (SZA dependence of the electron density and ion and electron temperatures) and modeling studies of the polar wind indicate that the plasma density profile (especially of the O + ion density) in the polar cap is strongly controlled by solar radiation onto the ionosphere by changing ion and electron temperatures in the ionosphere during geomagnetically quiet periods.
To elucidate the characteristics of electromagnetic conjugacy of traveling ionospheric disturbances just after the 15 January 2022 Hunga Tonga-Hunga Ha’apai volcanic eruption, we analyze Global Navigation Satellite System-total electron content data and ionospheric plasma velocity data obtained from the Super Dual Auroral Radar Network Hokkaido pair of radars. Further, we use thermal infrared grid data with high spatial resolution observed by the Himawari 8 satellite to identify lower atmospheric disturbances associated with surface air pressure waves propagating as a Lamb mode. After 07:30 UT on 15 January, two distinct traveling ionospheric disturbances propagating in the westward direction appeared in the Japanese sector with the same structure as those at magnetically conjugate points in the Southern Hemisphere. Corresponding to these traveling ionospheric disturbances with their large amplitude of 0.5 – 1.1 × 1016 el/m2 observed in the Southern Hemisphere, the plasma flow direction in the F region changed from southward to northward. At this time, the magnetically conjugate points in the Southern Hemisphere were located in the sunlit region at a height of 105 km. The amplitude and period of the plasma flow variation are ~ 100–110 m/s and ~ 36–38 min, respectively. From the plasma flow perturbation, a zonal electric field is estimated as ~ 2.8–3.1 mV/m. Further, there is a phase difference of ~ 10–12 min between the total electron content and plasma flow perturbations. This result suggests that the external electric field variation generates the traveling ionospheric disturbances observed in both Southern and Northern Hemispheres. The origin of the external electric field is an E-region dynamo driven by the neutral wind oscillation associated with atmospheric acoustic waves and gravity waves. Finally, the electric field propagates to the F region and magnetically conjugate ionosphere along magnetic field lines with the local Alfven speed, which is much faster than that of Lamb mode waves. From these observational facts, it can be concluded that the E-region dynamo electric field produced in the sunlit Southern Hemisphere is a main cause of the two distinct traveling ionospheric disturbances appearing over Japan before the arrival of the air pressure disturbances. Graphical Abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.