Many animals keep track of their angular heading over time while navigating through their environment. However, a neural-circuit architecture for computing heading has not been experimentally defined in any species. Here we describe a set of clockwise- and anticlockwise-shifting neurons in the Drosophila central complex whose wiring and physiology provide a means to rotate an angular heading estimate based on the fly's angular velocity. We show that each class of shifting neurons exists in two subtypes, with spatiotemporal activity profiles that suggest different roles for each subtype at the start and end of tethered-walking turns. Shifting neurons are required for the heading system to properly track the fly's heading in the dark, and stimulation of these neurons induces predictable shifts in the heading signal. The central features of this biological circuit are analogous to those of computational models proposed for head-direction cells in rodents and may shed light on how neural systems, in general, perform integration.
The Drosophila Notch (N) gene encodes a conserved single-pass transmembrane receptor that transduces extracellular signals controlling cell fate. Here, we present evidence that the intracellular domain of Notch gains access to the nucleus in response to ligand, possibly through a mechanism involving proteolytic cleavage and release from the remainder of the protein. In addition, our results suggest that signal transduction by Notch depends on the ability of the intracellular domain, particularly the portion containing the CDC10 repeats, to reach the nucleus and to participate in the transcriptional activation of downstream target genes.
Ligand binding to receptors of the LIN-12/Notch family causes at least two proteolytic cleavages: one between the extracellular and transmembrane domains, and the other within the transmembrane domain. The transmembrane cleavage depends on Presenilin, a protein also required for transmembrane cleavage of beta-APP. Here, we have assayed the substrate requirements for Presenilin-dependent processing of Notch and other type I transmembrane proteins in vivo. We find that the Presenilin-dependent cleavage does not depend critically on the recognition of particular sequences in these proteins but rather on the size of the extracellular domain: the smaller the size, the greater the efficiency of cleavage. Hence, Notch, beta-APP, and perhaps other proteins may be targeted for Presenilin-mediated transmembrane cleavage by upstream processing events that sever the extracellular domain from the rest of the protein.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.