BackgroundRecently, the association of plasma free amino acid (PFAA) profile and lifestyle-related diseases has been reported. However, few studies have been reported in large Asian populations, about the usefulness of PFAAs for evaluating disease risks. We examined the ability of PFAA profiles to evaluate lifestyle-related diseases in so far the largest Asian population.MethodsWe examined plasma concentrations of 19 amino acids in 8589 Japanese subjects, and determined the association with variables associated with obesity, blood glucose, lipid, and blood pressure. We also evaluated the PFAA indexes that reflect visceral fat obesity and insulin resistance. The contribution of single PFAA level and relevant PFAA indexes was also examined in the risk assessment of lifestyle-related diseases.ResultsOf the 19 amino acids, branched-chain amino acids and aromatic amino acids showed association with obesity and lipid variables. The PFAA index related to visceral fat obesity showed relatively higher correlation with variables than that of any PFAA. In the evaluation of lifestyle-related disease risks, the odds ratios of the PFAA index related to visceral fat obesity or insulin resistance with the diseases were higher than most of those of individual amino acid levels even after adjusting for potential confounding factors. The association pattern of the indexes and PFAA with each lifestyle-related disease was distinct.ConclusionsWe confirmed the usefulness of PFAA profiles and indexes as markers for evaluating the risks of lifestyle-related diseases, including diabetes mellitus, metabolic syndrome, dyslipidemia, and hypertension in a large Asian population.
Protein sorting in the secretory pathway is crucial to maintain cellular compartmentalization and homeostasis. In addition to coat-mediated sorting, the role of lipids in driving protein sorting during secretory transport is a longstanding fundamental question that still remains unanswered. Here, we conduct 3D simultaneous multicolor high-resolution live imaging to demonstrate in vivo that newly synthesized glycosylphosphatidylinositol-anchored proteins having a very long chain ceramide lipid moiety are clustered and sorted into specialized endoplasmic reticulum exit sites that are distinct from those used by transmembrane proteins. Furthermore, we show that the chain length of ceramide in the endoplasmic reticulum membrane is critical for this sorting selectivity. Our study provides the first direct in vivo evidence for lipid chain length–based protein cargo sorting into selective export sites of the secretory pathway.
Clinical manifestations of autoimmune hepatitis (AIH) range from mild chronic to acute, sometimes fulminant hepatitis. However, it is unknown how the progression to fatal hepatitis occurs. We developed a mouse model of fatal AIH by inducing a concurrent loss of forkhead box P3 1 regulatory T cells and programmed cell death-1 (PD-1)-mediated signaling. In this model, dysregulated follicular helper T cells in the spleen are responsible for the induction, and the C-C chemokine receptor 6/C-C chemokine ligand 20 axis is crucial for the migration of these T cells into the liver. Using this fatal AIH model, we aimed to clarify key molecules triggering fatal AIH progression. During progression, Tbet together with interferon (IFN)-c and C-X-C chemokine receptor (CXCR)3 were highly expressed in the inflamed liver, suggesting helper T (Th)1-type inflammation. T cells that dominantly expanded in the spleen and the inflamed liver were CXCR3-expressing CD8 1 T cells; depletion of these CD8 1 T cells suppressed AIH progression. Expression of one CXCR3 ligand, chemokine (C-X-C motif) ligand (CXCL)9, was elevated in the liver. CXCL9-expressing macrophages/Kupffer cells were colocalized with infiltrating T cells, and in vivo administration of anti-CXCL9 suppressed AIH progression. In addition, serum levels of interleukin (IL)-18, but not IL-1b, were elevated during progression, and dendritic cells in the spleen and liver highly produced IL-18. In vivo administration of anti-IL-18R suppressed the increase of splenic CXCR3 1 T cells and the progression to fatal AIH. Moreover, tumor necrosis factor alpha, but not IFN-c, was involved in upregulating CXCL9 in the liver and for increased serum levels of IL-18. Conclusion: These data suggest that, in our mouse model, fatal progression of AIH is mediated by IL-18-dependent differentiation of T cells into Th1 cells and effector T cells, respectively, and that CXCR3-CXCL9 axis-dependent migration of those T cells is crucial for fatal progression. (HEPATOLOGY 2014;60:224-236)
We measured the maxillary sinus volume of normal children and those with bilateral chronic sinusitis by coronal CT scan of the paranasal sinus, and compared the results with findings previously obtained from adult patients. The distribution of mean maxillary sinus volume by age group from 4–9 to 70–79 years exhibited a monomodal pattern with a peak in the 20s in both the normal group and the surgical therapy group. The maxillary sinus volumes of children aged 10–15 years and adults tended to be smaller in the surgical therapy group than in the normal group; this tendency was more prominent in the adult group. These findings appear to support the hypothesis that the ethmoid infundibulum and middle meatus are narrowed by inflammation of the ostiomeatal complex and by various bony anatomic variations in the nasal cavity, leading to impaired pneumatization of the maxillary sinus.
Lipid composition varies among organelles, and the distinct lipid composition is important for specific functions of each membrane. Lipid transport between organelles, which is critical for the maintenance of membrane lipid composition, occurs by either vesicular or non-vesicular mechanisms. In yeast, ceramide synthesized in the endoplasmic reticulum (ER) is transported to the Golgi apparatus where inositolphosphorylceramide (IPC) is formed. Here we show that a fraction of Tcb3p, a yeast tricalbin protein, localizes to ER-Golgi contact sites. Tcb3p and their homologs Tcb1p and Tcb2p are required for formation of ER-Golgi contacts and non-vesicular ceramide transport. Absence of Tcb1p, Tcb2p, and Tcb3p increases acylceramide synthesis and subsequent lipid droplet (LD) formation. As LD can sequester excess lipids, we propose that tricalbins act as regulators of ceramide transport at ER-Golgi contact sites to help reduce a potentially toxic accumulation of ceramides.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.