SUMMARYThe oocytes of vertebrates are typically arrested at metaphase II (mII) by the cytostatic factor Emi2 until fertilization. Regulatory mechanisms in Xenopus Emi2 (xEmi2) are understood in detail but contrastingly little is known about the corresponding mechanisms in mammals. Here, we analyze Emi2 and its regulatory neighbours at the molecular level in intact mouse oocytes. Emi2, but not xEmi2, exhibited nuclear targeting. Unlike xEmi2, separable N-and C-terminal domains of mouse Emi2 modulated metaphase establishment and maintenance, respectively, through indirect and direct mechanisms. The C-terminal activity was mapped to the potential phosphorylation target Tx 5 SxS, a destruction box (D-box), a lattice of Zn 2+ -coordinating residues and an RL domain. The minimal region of Emi2 required for its cytostatic activity was mapped to a region containing these motifs, from residue 491 to the C terminus. The cytostatic factor Mos-MAPK promoted Emi2-dependent metaphase establishment, but Mos autonomously disappeared from meiotically competent mII oocytes. The N-terminal Plx1-interacting phosphodegron of xEmi2 was apparently shifted to within a minimal fragment (residues 51-300) of mouse Emi2 that also contained a calmodulin kinase II (CaMKII) phosphorylation motif and which was efficiently degraded during mII exit. Two equimolar CaMKII isoform variants were present in mII oocytes, neither of which phosphorylated Emi2 in vitro, consistent with the involvement of additional factors. No evidence was found that calcineurin is required for mouse mII exit. These data support a model in which mammalian meiotic establishment, maintenance and exit converge upon a modular Emi2 hub via evolutionarily conserved and divergent mechanisms.
[Purpose] The present study, was conducted to examine the occlusal force and physical, cognitive, and attentional functions of elderly females living in the community to evaluate the significance of measuring the occlusal force. [Subjects and Methods] The number of subjects was 104. The Occlusal Force Meter GM10 was used to measure their occlusal force. Their physical functions were assessed using eight examinations, including the 30-second Chair Stand Test, and the cognitive functions of the Mini-Mental State Examination and attention functions of the Trail Making Test. [Results] Significant correlations were noted between the occlusal force and all measurements, except for the results of forward bending in a sitting position. Multiple regression analysis was conducted with the occlusal force as an objective variable, and significant partial correlations were noted with the 30-second Chair Stand Test. [Conclusion] These results suggest that it is necessary to provide the elderly with comprehensive support focusing on maintaining their occlusal force, as a nursing care-prevention measure, to help them continue to live a healthy, independent life.
[Purpose] The purpose of this study was to evaluate the lower limb muscle strength of the community-dwelling elderly, with or without cognitive decline, using isometric knee extension strength (IKES) and the 30-second chair stand test (CS-30). [Subjects] A total of 306 community-dwelling elderly participated in this study. Assessment items were the CS-30, IKES, Mini-Mental State Examination (MMSE), and Trail-Making Test Part A (TMT-A). [Methods] Participants were divided into three groups according to their MMSE score: cognitive impairment (MMSE ≤ 24), cognitive decline (MMSE 25 to 27), and normal (MMSE ≥ 28). We compared IKES and CS-30 among the three groups. [Results] IKES was not significantly different among the three groups. However, the CS-30 was significantly different among the three groups. Upon further analysis the CS-30 score of each group, when adjusted for age and TMT-A, did not indicate a significant difference. [Conclusion] These results suggest that the lower limb muscle strength of the elderly does not differ with cognitive decline. Moreover, we suggest that when using the CS-30 score as an indicator of lower limb muscle strength attentional function should be taken into account.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.