Root apical meristem (RAM) organization in lycophytes could be a key to understanding the early evolution of roots, but this topic has been insufficiently explored. We examined the RAM organization of lycophytes in terms of cell division activities and anatomies, and compared RAMs among vascular plants. RAMs of 13 species of lycophytes were semi-thin-sectioned and observed under a light microscope. Furthermore, the frequency of cell division in the RAM of species was analyzed using thymidine analogs. RAMs of lycophytes exhibited four organization types: type I (Lycopodium and Diphasiastrum), II (Huperzia and Lycopodiella), III (Isoetes) and RAM with apical cell (Selaginella). The type I RAM found in Lycopodium had a region with a very low cell division frequency, reminiscent of the quiescent center (QC) in angiosperm roots. This is the first clear indication that a QC-like region is present in nonseed plants. At least four types of RAM are present in extant lycophytes, suggesting that RAM organization is more diverse than expected. Our results support the paleobotanical hypothesis that roots evolved several times in lycophytes, as well as in euphyllophytes.
Roots have played a pivotal role in the conquest of land by vascular plants, yet their origin has remained enigmatic. Palaeobotanical evidence suggests that roots may have originated from subterranean shoots in some lycophyte species. If this hypothesis is correct, it would follow that the roots and shoots of extant lycophytes share fundamental developmental mechanisms. We tracked meristem dynamics in root and shoot apices of Lycopodium clavatum using a thymidine analogue and expression patterns of histone H4, respectively. Then we compared the meristem dynamics of roots and shoots to identify developmental similarities. Both apical meristems contained a quiescent tissue characterised by a low frequency of cell division. Actively dividing cells appeared in the quiescent tissue during dichotomous branching of both roots and shoots. As a result, the parental meristem divides into two daughter meristems, which give rise to new root or shoot apices. These striking similarities in meristem dynamics provide new neobotanical data that support the shoot-origin hypothesis of lycophyte roots. Although Lycopodium roots may have originated from subterranean shoots of Devonian lycophytes, these shoots may have changed into root-bearing axes in other extant lycophyte lineages.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.