BackgroundPulmonary fibrosis is a life-threatening disease characterized by progressive dyspnea and worsening pulmonary function. Atrial natriuretic peptide (ANP), a heart-derived secretory peptide used clinically in Japan for the treatment of acute heart failure, exerts a wide range of protective effects on various organs, including the heart, blood vessels, kidneys, and lungs. Its therapeutic properties are characterized by anti-inflammatory and anti-fibrotic activities mediated by the guanylyl cyclase-A (GC-A) receptor. We hypothesized that ANP would have anti-fibrotic and anti-inflammatory effects on bleomycin (BLM)-induced pulmonary fibrosis in mice.MethodsMice were divided into three groups: normal control, BLM with vehicle, and BLM with ANP. ANP (0.5 μg/kg/min via osmotic-pump, subcutaneously) or vehicle administration was started before BLM administration (1 mg/kg) and continued until the mice were sacrificed. At 7 or 21 days after BLM administration, fibrotic changes and infiltration of inflammatory cells in the lungs were assessed based on histological findings and analysis of bronchoalveolar lavage fluid. In addition, fibrosis and inflammation induced by BLM were evaluated in vascular endothelium-specific GC-A overexpressed mice. Finally, attenuation of transforming growth factor-β (TGF-β) signaling by ANP was studied using immortalized mouse endothelial cells stably expressing GC-A receptor.ResultsANP significantly decreased lung fibrotic area and infiltration of inflammatory cells in lungs after BLM administration. Furthermore, similar effects of ANP were observed in vascular endothelium–specific GC-A overexpressed mice. In cultured mouse endothelial cells, ANP reduced phosphorylation of Smad2 after TGF-β stimulation.ConclusionsANP exerts protective effects on BLM-induced pulmonary fibrosis via vascular endothelial cells.
These results conclusively suggest that oral candidiasis is associated with salivary gland hypofunction and that decreases of salivary antibacterial proteins induce Candida overgrowth.
Oxidative stress plays an important role in the pathogenesis of chronic obstructive pulmonary disease (COPD). The activation of nuclear factor erythroid 2-related factor 2 (Nrf2) is a key cellular defense mechanism against oxidative stress. Recent studies have shown that astaxanthin protects against oxidative stress via Nrf2. In this study, we investigated the emphysema suppression effect of astaxanthin via Nrf2 in mice. Mice were divided into four groups: control, smoking, astaxanthin, and astaxanthin + smoking. The mice in the smoking and astaxanthin + smoking groups were exposed to cigarette smoke for 12 weeks, and the mice in the astaxanthin and astaxanthin + smoking groups were fed a diet containing astaxanthin. Significantly increased expression levels of Nrf2 and its target gene, heme oxygenase-1 (HO-1), were found in the lung homogenates of astaxanthin-fed mice. The number of inflammatory cells in the bronchoalveolar lavage fluid (BALF) was significantly decreased, and emphysema was significantly suppressed. In conclusion, astaxanthin protects against oxidative stress via Nrf2 and ameliorates cigarette smoke-induced emphysema. Therapy with astaxanthin directed toward activating the Nrf2 pathway has the potential to be a novel preventive and therapeutic strategy for COPD.
During orthodontic tooth movement, mechanical stresses induce inflammatory reactions in the periodontal ligament (PDL). We hypothesized that chemokines released from PDL cells under mechanical stress regulate osteoclastogenesis, and investigated the profiles and mechanisms of chemokine expression by human PDL cells in response to mechanical stress. In vitro, shear stress and pressure force rapidly increased the gene and protein expressions of IL-8/CXCL8 by PDL cells. Consistently, amounts of IL-8 in the gingival crevicular fluid of healthy individuals increased within 2 to 4 days of orthodontic force application. The PDL cells constitutively expressed low levels of IL-1beta, which were not further increased by mechanical stress. Interestingly, neutralization of IL-1beta abolished IL-8 induction by mechanical stresses, indicating that IL-1beta is essential for IL-8 induction, presumably though autocrine or paracrine mechanisms. Finally, experiments with signal-specific inhibitors indicated that MAP kinase activation is essential for IL-8 induction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.