There were no differences in the HB system between the DG and NDG at the start of treatment and at 1 month after onset. However, facial movement in the DG was poorer than that in the NDG at 3 months and 6 months after onset. In terms of the recovery rate, the rate in the DG (52.6%) was much lower than that in the NDG (82.5%) at 6 months after onset.
Promoting postoperative aeration of the entire middle ear is necessary to achieve better hearing outcome in patients undergoing CWD tympanoplasty and SWR for cholesteatoma.
Using immunohistochemical and electrophysiological methods, we investigated the role of L-type Ca(2+) channels in the regulation of the endocochlear potential (EP) of the endolymphatic surface cells (ESC) of the guinea pig stria vascularis. The following findings were made: (1) Administration of 30 microg/ml nifedipine via a vertebral artery significantly suppressed the transient asphyxia-induced decrease in the EP (TAID) and the transient asphyxia-induced increase in the Ca(2+), referred to as TAIICa, concentration in the endolymph ([Ca](e)). (2) The endolymphatic administration of 1 microg/ml nifedipine significantly inhibited the TAID as well as the TAIICa. The endolymphatic administration of nifedipine (0.001-10 microg/ml) inhibited the TAID in a dose-dependent manner. (3) The endolymphatic administration of (+)-Bay K8644, an L-type Ca(2+) channel closer, significantly inhibited the TAID, whereas (-)-Bay K8644, an L-type Ca(2+) channel opener, caused a large decrease in the EP from approximately +75 mV to approximately +20 mV at 10 min after the endolymphatic administration. (4) By means of immunohistochemistry, a positive staining reaction with L-type Ca(2+) channels was detected in the marginal cells of the stria vascularis. (5) Under the high [Ca](e) condition, we examined the mechanism of the TAIICa and hypothesized that the TAIICa might have been caused by the decrease in the EP through a shunt pathway in the ESC. (6) The administration of nifedipine to the endolymph significantly inhibited the Ba(2+)-induced decrease in the EP. These findings support the view that L-type Ca(2+) channels in the marginal cells regulate the EP, but not directly the TAIICa.
We examined the effect of the Ca(2+) concentration in the endolymph ([Ca](e)) or in the endolymphatic surface cells ([Ca](i)) on the endocochlear potential (EP) by using an endolymphatic or perilymphatic perfusion technique, respectively. (i) A large increase in [Ca](e) up to approximately 10(-3) M with a fall in the EP was induced by transient asphyxia ( approximately 2 min) or by the intravenous administration of furosemide (60 mg/kg), and a significant correlation was obtained between the EP and p[Ca](e) (= -log [Ca](e), r = 0.998). (ii) Perfusion of the endolymph with 10 mM EGTA for 5 min neither produced any significant change in the EP nor altered the asphyxia-induced change in EP (DeltaEP(asp)), suggesting that neither [Ca](e) nor the Ca(2+) concentration gradient across the stria vascularis contributed directly to the generation of the EP in the condition of low [Ca](e). In contrast, endolymphatic perfusion with high Ca(2+) (more than 10 mM) produced a decrease in EP and a significant correlation was obtained between the EP and the Ca(2+) concentration of perfusion solution (r = 0.982), suggesting that Ca(2+) permeability may exist across the stria vascularis. (iii) The administration of a Ca(2+) chelator, EGTA-acetoxymethyl ester (AM, 0.3 mM), to the endolymph, which produced a gradual increase in EP, suppressed significantly, by 60-80%, DeltaEP(asp) or furosemide-induced changes in EP. In contrast, perilymphatic administration of 0.5 mM EGTA-AM caused no significant suppression of the DeltaEP(asp). These findings suggest that [Ca](i) plays an important role in generating/maintaining a large positive EP.
In 1978, Bosher and Warren first pointed out that the free Ca 2ϩ concentration in cochlear endolymph ([Ca] e ) was unusually low for an extracellular fluid and was gradually increased by anoxia [1]. Only a few experiments have since been conducted to measure the changes in [Ca] Physiology, 53, 35-44, 2003]
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.