We carried out a multistage genome-wide association study of type 2 diabetes mellitus in Japanese individuals, with a total of 1,612 cases and 1,424 controls and 100,000 SNPs. The most significant association was obtained with SNPs in KCNQ1, and dense mapping within the gene revealed that rs2237892 in intron 15 showed the lowest Pvalue (6.7 x 10(-13), odds ratio (OR) = 1.49). The association of KCNQ1 with type 2 diabetes was replicated in populations of Korean, Chinese and European ancestry as well as in two independent Japanese populations, and meta-analysis with a total of 19,930 individuals (9,569 cases and 10,361 controls) yielded a P value of 1.7 x 10(-42) (OR = 1.40; 95% CI = 1.34-1.47) for rs2237892. Among control subjects, the risk allele of this polymorphism was associated with impairment of insulin secretion according to the homeostasis model assessment of beta-cell function or the corrected insulin response. Our data thus implicate KCNQ1 as a diabetes susceptibility gene in groups of different ancestries.
We conducted a genome-wide association study using 207,097 SNP markers in Japanese individuals with type 2 diabetes and unrelated controls, and identified KCNQ1 (potassium voltage-gated channel, KQT-like subfamily, member 1) to be a strong candidate for conferring susceptibility to type 2 diabetes. We detected consistent association of a SNP in KCNQ1 (rs2283228) with the disease in several independent case-control studies (additive model P = 3.1 x 10(-12); OR = 1.26, 95% CI = 1.18-1.34). Several other SNPs in the same linkage disequilibrium (LD) block were strongly associated with type 2 diabetes (additive model: rs2237895, P = 7.3 x 10(-9); OR = 1.32, 95% CI = 1.20-1.45, rs2237897, P = 6.8 x 10(-13); OR = 1.41, 95% CI = 1.29-1.55). The association of these SNPs with type 2 diabetes was replicated in samples from Singaporean (additive model: rs2237895, P = 8.5 x 10(-3); OR = 1.14, rs2237897, P = 2.4 x 10(-4); OR = 1.22) and Danish populations (additive model: rs2237895, P = 3.7 x 10(-11); OR = 1.24, rs2237897, P = 1.2 x 10(-4); OR = 1.36).
Mitochondrial oxidative damage is a basic mechanism of aging, and multiple studies demonstrate that this process is attenuated by calorie restriction (CR). However, the molecular mechanism that underlies the beneficial effect of CR on mitochondrial dysfunction is unclear. Here, we investigated in mice the mechanisms underlying CR-mediated protection against hypoxia in aged kidney, with a special focus on the role of the NAD-dependent deacetylase sirtuin 1 (Sirt1), which is linked to CR-related longevity in model organisms, on mitochondrial autophagy. Adult-onset and long-term CR in mice promoted increased Sirt1 expression in aged kidney and attenuated hypoxia-associated mitochondrial and renal damage by enhancing BCL2/adenovirus E1B 19-kDa interacting protein 3-dependent (Bnip3-dependent) autophagy. Culture of primary renal proximal tubular cells (PTCs) in serum from CR mice promoted Sirt1-mediated forkhead box O3 (Foxo3) deacetylation. This activity was essential for expression of Bnip3 and p27Kip1 and for subsequent autophagy and cell survival of PTCs under hypoxia. Furthermore, the kidneys of aged Sirt1 +/-mice were resistant to CR-mediated improvement in the accumulation of damaged mitochondria under hypoxia. These data highlight the role of the Sirt1-Foxo3 axis in cellular adaptation to hypoxia, delineate a molecular mechanism of the CR-mediated antiaging effect, and could potentially direct the design of new therapies for age-and hypoxia-related tissue damage. IntroductionIncreasing age causes progressive postmaturational deterioration of tissues and organs, leading to impairment of tissue functioning, increased vulnerability to challenges, and death. The kidney is a typical target organ of age-associated tissue damage, and the increased incidence of chronic kidney disease (CKD) in the elderly is a health problem worldwide (1-3). However, there is little or no information on the mechanisms underlying age-associated kidney damage. Thus, studies designed to determine such molecular mechanisms could help formulate interventions that delay the onset and/or progression of CKD in elderly patients.Among the several proposed theories on the pathogenesis of ageassociated tissue damage, the mitochondrial ROS theory provides the basic mechanism of age-associated tissue dysfunction (4, 5): that age-dependent alteration in mitochondrial DNA (mtDNA) plays a fundamental role in the age-associated increase in ROS and subsequent tissue damage (6, 7). Further evidence linking alterations in mtDNA with progressive age-dependent tissue dysfunction can be found in individuals with mitochondrial genetic diseases and mice with deletion mutation of mtDNA, which display a phenotype that resembles premature aging, including kidney dysfunction (8,9). Hypoxia is the cause of age-associated mitochondrial dysfunction (10) and is involved in age-dependent tissue damage affecting the brain (11), heart (12), and kidney (13). Furthermore, hypoxia modulates various cellular processes, such as apoptosis, cell cycle, autophagy, and glucose me...
Guidelines for gastroenterological endoscopy in patients undergoing antithrombotic treatment have been produced by the Japan Gastroenterological Endoscopy Society in collaboration with the Japan Circulation Society, the Japanese Society of Neurology, the Japan Stroke Society, the Japanese Society on Thrombosis and Hemostasis and the Japan Diabetes Society. Previous guidelines from the Japan Gastroenterological Endoscopy Society have focused primarily on prevention of hemorrhage after gastroenterological endoscopy as a result of continuation ofantithrombotic therapy, without considering the associated risk of thrombosis. The new edition of the guidelines includes discussions of gastroenterological hemorrhage associated with continuation of antithrombotic therapy, as well as thromboembolism associated with withdrawal of antithrombotic therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.