Novel organic dyes (MK dyes), which have a carbazole derivative as an electron donor and a cyanoacrylic acid moiety (dC(sCtN)COOH) as an electron acceptor and an anchoring group, connected with n-hexyl-substituted oligothiophenes as a π-conjugated system, were designed and synthesized for application in dye-sensitized solar cells (DSSCs), which are one of the promising molecular photovoltaics. The photovoltaic performance of the DSSCs based on MK dyes markedly depends on the molecular structure of the dyes in terms of the number and position of n-hexyl chains and the number of thiophene moieties. Retardation of charge recombination caused by the existence of n-hexyl chains linked to the thiophene groups resulted in an increase in electron lifetime. As a consequence, an improvement of open-circuit photovoltage (V oc ) and hence the solar-to-electric power conversion efficiency (η) of DSSCs was achieved upon addition of n-hexyl chains to the thiophene groups. In addition, the adsorption condition (amount of dye molecules and/or dye aggregate thickness) on the nanoporous TiO 2 electrode, depending on the number of hexyl chains, strongly affected the performance of DSSCs. A larger amount and/or thicker aggregate of dye molecules brought about longer electron lifetime, which resulted in higher V oc , and slower diffusion of I 3 ions in the nanoporous TiO 2 electrode, which led to lower short-circuit photocurrent (J sc ) and fill factor (FF). In the result of thorough investigation on the series of MK dyes, a DSSC based on MK-2 consisting of n-hexyl-substituted quarter-thiophene produced 8.3% of η (J sc ) 15.22 mA cm -2 , V oc ) 0.73 V, and FF ) 0.75) under 100 mW cm -2 simulated AM1.5G solar irradiation.
C-H, N-H Coupling of azoles takes place with several amines in the presence of a copper catalyst to undergo amination at the 2-position. The reaction of benzothiazole with N-methylaniline in the presence of sodium acetate and 20 mol % Cu(OAc)(2) in xylene under an oxygen atmosphere afforded the aminated product in 81% yield.
Reaction of 1-trimethylsilylalkyne with copper(I) chloride in a polar solvent, DMF, at 60 degrees C under an aerobic conditions smoothly undergoes homo-coupling to give the corresponding symmetrical 1,3-butadiynes in 70-99% yields. In addition, (arylethynyl)trimethylsilanes are found to couple with aryl triflates and chlorides in the presence of Cu(I)/Pd(0) (10 mol %/5 or 10 mol %) cocatalyst system to give the corresponding diarylethynes in 49-99% yields. The cross-coupling reaction is applied to a one-pot synthesis of the corresponding unsymmetrical diarylethynes from (trimethylsilyl)ethyne via sequential Sonogashira-Hagihara and the present cross-coupling reactions using two different aryl triflates. The reactions of (arylethynyl)trimethylsilanes with aryl(chloro)ethynes in the presence of 10 mol % of CuCl also yield the corresponding unsymmetrical 1,3-butadiynes in 43-97% yields.
Palladium-catalyzed C-H homocoupling of thiophene derivatives takes place in the presence of silver(I) fluoride or acetate. A variety of bithiophenes are obtained in good to excellent yields. In particular, the reaction of 2-bromothiophene proceeds at room temperature to afford 5,5'-dibromo-2,2'-bithiophene, where the bromine atom is completely intact in the palladium-catalyzed reaction. XRD analysis reveals that silver fluoride is reduced to silver(0) during the reaction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.