mTOR is an evolutionarily conserved kinase that plays a critical role in sensing and responding to environmental determinants. Recent studies have shown that fine-tuning of the activity of mTOR complexes contributes to organogenesis and tumorigenesis. Although rapamycin, an allosteric mTOR inhibitor, is an effective immunosuppressant, the precise roles of mTOR complexes in early T-cell development remain unclear. Here we show that mTORC1 plays a critical role in the development of both early T-cell progenitors and leukemia. Deletion of Raptor, an essential component of mTORC1, produced defects in the earliest development of T-cell progenitors in vivo and in vitro. Deficiency of Raptor resulted in cell cycle abnormalities in early T-cell progenitors that were associated with instability of the Cyclin D2/D3-CDK6 complexes; deficiency of Rictor, an mTORC2 component, did not have the same effect, indicating that mTORC1 and -2 control T-cell development in different ways. In a model of myeloproliferative neoplasm and T-cell acute lymphoblastic leukemia (T-ALL) evoked by Kras activation, Raptor deficiency dramatically inhibited the cell cycle in oncogenic Kras-expressing T-cell progenitors, but not myeloid progenitors, and specifically prevented the development of T-ALL. Although rapamycin treatment significantly prolonged the survival of recipient mice bearing T-ALL cells, rapamycin-insensitive leukemia cells continued to propagate in vivo. In contrast, Raptor deficiency in the T-ALL model resulted in cell cycle arrest and efficient eradication of leukemia. Thus, understanding the cell-contextdependent role of mTORC1 illustrates the potential importance of mTOR signals as therapeutic targets.
Acute myeloid leukaemia (AML) is a heterogeneous neoplastic disorder in which a subset of cells function as leukaemia-initiating cells (LICs). In this study, we prospectively evaluated the leukaemia-initiating capacity of AML cells fractionated according to the expression of a nucleolar GTP binding protein, nucleostemin (NS). To monitor NS expression in living AML cells, we generated a mouse AML model in which green fluorescent protein (GFP) is expressed under the control of a region of the NS promoter (NS-GFP). In AML cells, NS-GFP levels were correlated with endogenous NS mRNA. AML cells with the highest expression of NS-GFP were very immature blast-like cells, efficiently formed leukaemia colonies in vitro, and exhibited the highest leukaemia-initiating capacity in vivo. Gene expression profiling analysis revealed that cell cycle regulators and nucleotide metabolism-related genes were highly enriched in a gene set associated with leukaemia-initiating capacity that we termed the 'leukaemia stem cell gene signature'. This gene signature stratified human AML patients into distinct clusters that reflected prognosis, demonstrating that the mouse leukaemia stem cell gene signature is significantly associated with the malignant properties of human AML. Further analyses of gene regulation in leukaemia stem cells could provide novel insights into diagnostic and therapeutic approaches to AML.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.