Abstract:The authors have focused on the bipedal humanoid robot expected to play an active role in human living space, through studies on an anthropomorphic biped walking robot. As the first stage of developing a bipedal humanoid robot, the authors developed the human-size 35 active DOF bipedal humanoid robot "WABIAN" and the human-size 41 active DOF bipedal humanoid robot " WABIAN-R". The authors also proposed a basic control method of whole body cooperative dynamic biped walking that uses trunk or trunk-waist cooperative motion to compensate for three-axis (pitch, roll and yaw-axis) moment generated not only by the motion of the lower-limbs planned arbitrarily but by the time trajectory of the hands planned arbitrarily. Using these systems and the control method, normal biped walking cforward and backward), dynamic dance waving arms and hip, dynamic carrying of a load using its arms, and trunk-waist cooperative dynamic walking are achieved.
BackgroundThe humanoid robot WE4-RII was designed to express human emotions in order to improve human-robot interaction. We can read the emotions depicted in its gestures, yet might utilize different neural processes than those used for reading the emotions in human agents.MethodologyHere, fMRI was used to assess how brain areas activated by the perception of human basic emotions (facial expression of Anger, Joy, Disgust) and silent speech respond to a humanoid robot impersonating the same emotions, while participants were instructed to attend either to the emotion or to the motion depicted.Principal FindingsIncreased responses to robot compared to human stimuli in the occipital and posterior temporal cortices suggest additional visual processing when perceiving a mechanical anthropomorphic agent. In contrast, activity in cortical areas endowed with mirror properties, like left Broca's area for the perception of speech, and in the processing of emotions like the left anterior insula for the perception of disgust and the orbitofrontal cortex for the perception of anger, is reduced for robot stimuli, suggesting lesser resonance with the mechanical agent. Finally, instructions to explicitly attend to the emotion significantly increased response to robot, but not human facial expressions in the anterior part of the left inferior frontal gyrus, a neural marker of motor resonance.ConclusionsMotor resonance towards a humanoid robot, but not a human, display of facial emotion is increased when attention is directed towards judging emotions.SignificanceArtificial agents can be used to assess how factors like anthropomorphism affect neural response to the perception of human actions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.