In this paper, we discuss development of a sprawling-type quadruped robot named TITAN-XIII which is capable of high speed and energy efficient walking. We consider a sprawling-type quadruped robot is practical, because of its high stability which comes from the large supporting leg polygon and the low center of gravity. However in previous researches, the speed and the energy efficiency of a sprawling-type quadruped robot is lower than a mammal-type quadruped robot. Since cost of transport (COT) can be reduced by increase of walking velocity, we decided to design a fast walking sprawling-type quadruped robot. As a demonstrator, we developed the sprawling-type quadruped robot named TITAN-XIII. For a lightweight and compact leg, the right-angle type wire driven mechanism is adopted to the robot. To confirm its performance, several experiments were carried out and the robot walked at 1.38 m/s and COT of 1.76 was achieved. Finally, we compared the performance of TITAN-XIII with other quadruped robots, and confirm that its performance is almost same level as mammal-type quadruped robots.
The decommissioning of the Fukushima Daiichi Nuclear Power Plants is a national urgent problem in Japan. The distribution and characteristics of the fuel debris inside the nuclear reactor must be investigated to safely retrieve them. This study describes a 10 m-long articulated manipulator for investigation inside the primary container vessel. We employed a coupled tendon-driven mechanism and a gravity compensation mechanism using synthetic fiber ropes to design a lightweight and slender articulated manipulator. After discussing the basic principle and control algorithm, we focus on the detailed mechanical design of a prototype model. We confirmed its feasibility through basic motion experiments.
In this study, we investigate physical properties of synthetic fiber ropes for drive mechanism. First, we carry out experiment about the relation between tensile strength and bending ratio D/d, where D is pulley diameter and d is rope diameter. Although it is widely known that a metal wire rope gets strength reduction under small D/d, we newly detected that a synthetic fiber rope also gets strength reduction in the same way. Secondly, we evaluate the strength of various end fixation method of synthetic fiber rope. Knot fixation make rope strength half in all kinds of knot. Clamping fixation with enough pressuring force can get large strength even if a synthetic fiber rope has low friction coefficient. Although calking fixation and sewing fixation cannot change rope length easily, they can get the largest strength around 85 to 90 % of the rope strength in our experiment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.