The defect photoluminescence from TiO 2 nanoparticles in the anatase phase is reported for nanosheets which expose predominantly (001) surfaces and compared to that from conventional anatase nanoparticles which expose mostly (101) surfaces. Also reported is the weak defect photoluminescence of TiO 2 nanotubes, which we find using electron backscattered diffraction to consist of walls which expose ( 110) and ( 100) facets. The nanotubes exhibit photoluminescence that is blue-shifted and much weaker than that from conventional TiO 2 nanoparticles. Despite the preponderance of (001) surfaces in the nanosheet samples, they exhibit photoluminescence similar to that of conventional nanoparticles. We assign the broad visible photoluminescence of anatase nanoparticles to two overlapping distributions: hole trap emission associated with oxygen vacancies on (101) exposed surfaces, which peaks in the green, and a broader emission extending into the red which results from electron traps on undercoordinated titanium atoms, which are prevalent on (001) facets. The results of this study suggest how morphology of TiO 2 nanoparticles could be optimized to control the distribution and activity of surface traps. Our results also shed light on the mechanism by which the TiCl 4 surface treatment heals traps on anatase and mixed-phase TiO 2 films and reveals distinct differences in the trap-state distributions of TiO 2 nanoparticles and nanotubes. The molecular basis for electron and hole traps and their spatial separation on different facets is discussed.
Data have been compiled on the cross sections for collisions of electrons and photons with oxygen molecules (O2). For electron collisions, the processes included are: total scattering, elastic scattering, momentum transfer, excitations of rotational, vibrational, and electronic states, dissociation, ionization, and attachment. Ionization and dissociation processes are considered for photon impact. Cross-section data selected are presented graphically. Spectroscopic and other properties of the oxygen molecule are summarized for understanding of the collision processes. The literature was surveyed through August 1987, but some more recent data are included when available to the authors.
Data have been compiled on the cross sections for collisions of electrons and photons with nitrogen molecules (N2). For electron collisions, the processes considered are: total scattering, elastic scattering, momentum transfer, excitations of rotational, vibrational and electronic states, dissociation, and ionization. Ionization and dissociation processes are discussed for photon impact. Cross section data selected are presented graphically. Spectroscopic and other properties of the nitrogen molecule are summarized. The literature was surveyed through the end of 1984, but some more recent data are included when useful.
Electrides are materials in which alkali metals (Li through Cs) ionize to form bound alkali cations and "excess" electrons. The electrons reside in large cavities or channels or both in the host lattice. We report here the first synthesis of thermally stable inorganic electrides with cation-to-electron ratios of 1:1 as in organic electrides. Although alkali metal adducts to alumino-silicate zeolites are well known, the cation-to-electron ratio is generally 3:1 or greater because these zeolites contain alkali cations prior to incorporation of the alkali metal. In this work, two pure silica zeolites, ITQ-4and ITQ-7, with pore diameters of approximately 7 A, absorb up to 40 wt % cesium from the vapor phase (even at room temperature). The other alkali metals (except Li) can also be introduced at elevated temperatures. The optical and magnetic properties of the cesium-loaded samples suggest ionization to form Cs+ and e- with substantial electron-spin pairing. The metal-loaded samples are stable to at least 100 degrees C and are able to reduce small aromatic molecules such as benzene and naphthalene to the radical anions within the pores of the zeolite.
The recent finding that hydropersulfides (RSSH) are biologically prevalent in mammalian systems has prompted further investigation of their chemical properties in order to provide a basis for understanding their potential functions, if any. Hydropersulfides have been touted as hyper-reactive thiol-like species that possess increased nucleophilicity and reducing capabilities compared to their thiol counterparts. Herein, using persulfide generating model systems, the ability of RSSH species to act as one-electron reductants has been examined. Not unexpectedly, RSSH is relatively easily oxidized, compared to thiols, by weak oxidants to generate the perthiyl radical (RSS·). Somewhat surprisingly, however, RSS· was found to be stable in the presence of both O2 and NO and only appears to dimerize. Thus, the RSSH/RSS· redox couple is readily accessible under biological conditions and since dimerization of RSS· may be a rare event due to low concentrations and/or sequestration within a protein, it is speculated that the general lack of reactivity of individual RSS· species may allow this couple to be utilized as a redox component in biological systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.