These 62 patients with the Kabuki make-up syndrome (KMS) were collected in a collaborative study among 33 institutions and analyzed clinically, cytogenetically, and epidemiologically to delineate the phenotypic spectrum of KMS and to learn about its cause. Among various manifestations observed, most patients had the following five cardinal manifestations: 1) a peculiar face (100%) characterized by eversion of the lower lateral eyelid; arched eyebrows, with sparse or dispersed lateral one-third; a depressed nasal tip; and prominent ears; 2) skeletal anomalies (92%), including brachydactyly V and a deformed spinal column, with or without sagittal cleft vertebrae; 3) dermatoglyphic abnormalities (93%), including increased digital ulnar loop and hypothenar loop patterns, absence of the digital triradius c and/or d, and presence of fingertip pads; 4) mild to moderate mental retardation (92%); and 5) postnatal growth deficiency (83%). Thus the core of the phenotypic spectrum of KMS is rather narrow and clearly defined. Many other inconsistent anomalies were observed. Important among them were early breast development in infant girls (23%), and congenital heart defects (31%), such as a single ventricle with a common atrium, ventricular septal defect, atrial septal defect, tetralogy of Fallot, coarctation of aorta, patent ductus arteriosus, aneurysm of aorta, transposition of great vessels, and right bundle branch block. Of the 62 KMS patients, 58 were Japanese, an indication that the syndrome is fairly common in Japan. It was estimated that its prevalence in Japanese newborn infants is 1/32,000. All the KMS cases in this study were sporadic, the sex ratio was even, there was no correlation with birth order, the consanguinity rate among the parents was not high, and no incriminated agent was found that was taken by the mothers during early pregnancy. Three of the 62 patients had a Y chromosome abnormality involving a possible common breakpoint (Yp11.2). This could indicate another possibility, i.e., that the KMS gene is on Yp11.2 and that the disease is pseudoautosomal dominant. These findings are compatible with an autosomal dominant disorder in which every patient represents a fresh mutation. The mutation rate was calculated at 15.6 X 10(6).
Schimke immuno-osseous dysplasia is a multi-system autosomal recessive disorder with variable expression that affects the skeletal, renal, immune, vascular, and haematopoietic systems. Medical therapy is limited especially for more severely affected individuals.
Transcranial magnetic stimulation (TMS) has been used to describe cortical plasticity after unilateral cerebral lesions. The objective of this study was to find out whether cortical plasticity occurs after bilateral cerebral lesions. We investigated central motor reorganization for the arm and leg muscles in cerebral palsy (CP) patients with bilateral cerebral lesions using TMS. Seventeen patients (12 with spastic diplegia, 1 with spastic hemiplegia, and 4 with athetoid CP) and 10 normal subjects, were studied. On CT/MRI, bilateral periventricular leukomalacia was observed in all spastic patients with preterm birth. In two normal subjects, motor responses were induced in the ipsilateral tibialis anterior, but no responses were induced in any normal subject in the ipsilateral abductor pollicis brevis (APB) or biceps brachii (BB). Ipsilateral responses were more common among CP patients, especially in TMS of the less damaged hemisphere in patients with marked asymmetries in brain damage: in 3 abductor pollicis brevis, in 6 BBs, and in 15 tibialis anteriors. The cortical mapping of the sites of highest excitability demonstrated that the abductor pollicis brevis and BB sites in CP patients were nearly identical to those of the normal subjects. In patients with spastic CP born prematurely, a significant lateral shift was found for the excitability sites for the tibialis anterior. No similar lateral shift was observed in the other CP patients. These findings suggest that ipsilateral motor pathways are reinforced in both spastic and athetoid CP patients, and that a lateral shift of the motor cortical area for the leg muscle may occur in spastic CP patients with preterm birth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.