[1] Surface movement, internal deformation, and temperature were monitored over 5 years on Büz North rock glacier, a small rock glacier located at the lower limit of the permafrost belt in the Swiss Alps. The permafrost in the rock glacier mainly consists of pebbles and cobbles filled with interstitial ice. Two inclinometers installed at 4 and 5 m depths showed fast deformation with large seasonal and interannual variations, while the permafrost temperatures remained almost at the melting point. The movement of the inclinometers coincided with changes in the surface velocities. The deformation rapidly accelerated during snowmelt periods, whereas it gradually decelerated below a dry snow cover in winter. The frozen debris was more deformable than typical glacier ice at the melting point. These phenomena suggest that the frozen debris is permeable to snowmelt water. The fast deformation should result from significant annual relocation of debris particles, which probably creates a network of air voids in the frozen debris that eventually allows water infiltration. The meltwater infiltration accelerates the deformation by reducing effective stress, resulting in the reduced strength of the frozen debris. The refreezing of the pore water, which depends on the cooling intensity in winter, decelerates the deformation. The combination of these processes controls the temporal variations in the deformation.
[1] Six different geophysical investigations, (1) ground-penetrating radar, (2) DC resistivity sounding, (3) seismic refraction, (4) very low frequency (VHF) electromagnetic, (5) helicopter borne electromagnetic (HEM), and (6) transient electromagnetic (TEM) techniques, were employed to obtain information on the ice body properties of pingos near Fairbanks, Alaska. The surface nuclear magnetic resonance (NMR) data were also compared from similar sites near one of the study pingos. The geophysical investigations were undertaken, along with core sampling and permafrost drilling, to enable measurement of the ground temperature regime. Drilling (ground truthing) results support field geophysical investigations, and have led to the development of a technique for distinguishing massive ice and overburden material of the permafrost. The twodimensional DC resistivity sounding tomography and ground-penetrating radar profiling are useful for ice detection under heterogeneous conditions. However, the DC resistivity sounding investigation required high-quality ground contact and less area coverage. The active layer thickness and the homogeneous horizontal structure of the overburden material are important parameters influencing detection of massive ice in permafrost for most methods such as seismic, TEM, or surface NMR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.