Physical exercise can improve brain function, but the effects of exercise cessation are largely unknown. This study examined the time-course profile of hippocampal neurogenesis following exercise cessation. Male C57BL/6 mice were randomly assigned to either a control (Con) or an exercise cessation (ExC) group. Mice in the ExC group were reared in a cage with a running wheel for 8 wk and subsequently placed in a standard cage to cease the exercise. Exercise resulted in a significant increase in the density of doublecortin (DCX)-positive immature neurons in the dentate gyrus (at ). Following exercise cessation, the density of DCX-positive neurons gradually decreased and was significantly lower than that in the Con group at 5 and 8 wk after cessation, indicating that exercise cessation leads to a negative rebound in hippocampal neurogenesis. Immunohistochemistry analysis suggests that the negative rebound in neurogenesis is caused by diminished cell survival, not by suppression of cell proliferation and neural maturation. Neither elevated expression of ΔFosB, a transcription factor involved in neurogenesis regulation, nor increased plasma corticosterone, were involved in the negative neurogenesis rebound. Importantly, exercise cessation suppressed ambulatory activity, and a significant correlation between change in activity and DCX-positive neuron density suggested that the decrease in activity is involved in neurogenesis impairment. Forced treadmill running following exercise cessation failed to prevent the negative neurogenesis rebound. This study indicates that cessation of exercise or a decrease in physical activity is associated with an increased risk for impaired hippocampal function, which might increase vulnerability to stress-induced mood disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.