This study describes comprehensive polling of transcription start and termination sites and analysis of previously unidentified full-length complementary DNAs derived from the mouse genome. We identify the 5' and 3' boundaries of 181,047 transcripts with extensive variation in transcripts arising from alternative promoter usage, splicing, and polyadenylation. There are 16,247 new mouse protein-coding transcripts, including 5154 encoding previously unidentified proteins. Genomic mapping of the transcriptome reveals transcriptional forests, with overlapping transcription on both strands, separated by deserts in which few transcripts are observed. The data provide a comprehensive platform for the comparative analysis of mammalian transcriptional regulation in differentiation and development.
Hematopoietic stem cells (HSCs) reside and self-renew in the bone marrow (BM) niche. Overall, the signaling that regulates stem cell dormancy in the HSC niche remains controversial. Here, we demonstrate that TGF-β type II receptor-deficient HSCs show low-level Smad activation and impaired long-term repopulating activity, underlining the critical role of TGF-β/Smad signaling in HSC maintenance. TGF-β is produced as a latent form by a variety of cells, so we searched for those that express activator molecules for latent TGF-β. Nonmyelinating Schwann cells in BM proved responsible for activation. These glial cells ensheathed autonomic nerves, expressed HSC niche factor genes, and were in contact with a substantial proportion of HSCs. Autonomic nerve denervation reduced the number of these active TGF-β-producing cells and led to rapid loss of HSCs from BM. We propose that glial cells are components of a BM niche and maintain HSC hibernation by regulating activation of latent TGF-β.
The Polycomb group (PcG) gene Bmi-1 has recently been implicated in the maintenance of hematopoietic stem cells (HSC) from loss-of-function analysis. Here, we demonstrate that increased expression of Bmi-1 promotes HSC self-renewal. Forced expression of Bmi-1 enhanced symmetrical cell division of HSCs and mediated a higher probability of inheritance of stemness through cell division. Correspondingly, forced expression of Bmi-1, but not the other PcG genes, led to a striking ex vivo expansion of multipotential progenitors and marked augmentation of HSC repopulating capacity in vivo. Loss-of-function analyses revealed that among PcG genes, absence of Bmi-1 is preferentially linked with a profound defect in HSC self-renewal. Our findings define Bmi-1 as a central player in HSC self-renewal and demonstrate that Bmi-1 is a target for therapeutic manipulation of HSCs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.