Administering appropriate antimicrobial therapy as early as possible is important for rescuing bacteremic patients. Therefore, rapid antimicrobial susceptibility tests in positive blood culture specimens have been diligently sought. Adenosine triphosphate (ATP) bioluminescence-based methods have been used for rapid antimicrobial susceptibility tests. However, blood culture specimens have not been examined in many studies, possibly due to abundant intracellular ATP in blood corpuscles resulting in false-susceptible results. In this study, we developed a rapid ATP bioluminescence-based method for detecting antibiotic resistance starting from positive blood culture. To minimize background ATP originating from blood corpuscles, specimens were centrifuged and the supernatant diluted with broth, and an ATP-eliminating reagent was then added to the bacterial suspension at the beginning of incubation. This newly devised procedure reduced the background ATP by more than five orders of magnitude. In a pilot study using levofloxacin, no false-susceptible results were observed in 15 clinical specimens. Furthermore, the results indicated that the rapid method provided additional information about bacterial activities with high resolution, in contrast to the less-thorough findings with the conventional turbidity method. Therefore, our approach will contribute to the treatment of infectious diseases as a rapid antimicrobial susceptibility test.
BackgroundCell population data (CPD) parameters related to neutrophils, such as fluorescent light intensity (NE-SFL) and fluorescent light distribution width index (NE-WY), have emerged as potential biomarkers for sepsis. However, the diagnostic implication in acute bacterial infection remains unclear. This study assessed the diagnostic value of NE-WY and NE-SFL for bacteremia in patients with acute bacterial infections, and those associations with other sepsis biomarkers.MethodsPatients with acute bacterial infections were enrolled in this prospective observational cohort study. For all patients, a blood sample, with at least two sets of blood cultures, were collected at the onset of infection. Microbiological evaluation included examination of the blood bacterial load using PCR. CPD was assessed using Automated Hematology analyzer Sysmex series XN-2000. Serum levels of procalcitonin (PCT), interleukin-6 (IL-6), presepsin, and CRP were also assessed.ResultsOf 93 patients with acute bacterial infection, 24 developed culture-proven bacteremia and 69 did not. NE-SFL and NE-WY were significantly higher in patients with bacteremia than in those without bacteremia (p < 0.005, respectively), and were significantly correlated with the bacterial load determined by PCR (r = 0.384 and r = 0.374, p < 0.005, respectively). To assess the diagnostic value for bacteremia, receiver operating characteristic curve analysis was used. NE-SFL and NE-WY showed an area under the curve of 0.685 and 0.708, respectively, while those of PCT, IL-6, presepsin, and CRP were 0.744, 0.778, 0.685, and 0.528, respectively. Correlation analysis showed that the levels of NE-WY and NE-SFL were strongly correlated with PCT and IL-6 levels.ConclusionThis study demonstrated that NE-WY and NE-SFL could predict bacteremia in a manner that may be different from that of other indicators. These findings suggest there are potential benefits of NE-WY/NE-SFL in predicting severe bacterial infections.
BackgroundTo prevent the spread of drug-resistant bacteria, a rapid and accurate antimicrobial susceptibility test (AST) is necessary. Recently, morphokinetic microscopy approaches have been reported as a rapid AST method. However, these still require several hours to obtain a minimum inhibitory concentration (MIC). Adenosine triphosphate (ATP) luminescence has also been reported as a rapid AST method that can detect bacterial growth more rapidly than morphokinetic approaches, since ATP in bacteria increases prior to bacterial division. In this study, we designed a new machine learning-based algorithm that predicts MIC rapidly, using a dataset that contains ATP luminescence patterns and conventional MICs determined by turbidity. Essential agreement (EA) rates between rapid and conventional MIC were then evaluated.MethodsSixty-three strains of E. coli (ATCC 25922 and clinical isolates from Toyama University Hospital) were tested. Bacterial suspensions were diluted 500-fold in Mueller–Hinton broth from 0.5 McF solutions, and the final concentration of bacteria was 3×105 CFU/mL. The suspensions were dispensed into a 96-well microplate, which had 12 antimicrobials in two-fold dilution series, and the microplate was incubated at 35°C. At each measurement time point, the amount of ATP in a 10 μL aliquot from each well was evaluated by our original measurement system, which can sensitively detect ATP luminescence equivalent to a single bacterium. After 22 hours, MIC was determined conventionally by measuring turbidity. A rapid MIC for each bacterium was estimated by the algorithm based on the dataset consisting of the rest of the 62 strains (leave-one-out cross validation).ResultsTable 1 shows the EA rate for the 12 antimicrobials; EA rates > 90% were achieved for 7 antimicrobials in 2 hours and for 12 antimicrobials in 3 hours. In 6 hours, an average EA rate > 97% was achieved.ConclusionUsing the dataset, our new machine learning-based algorithm predicted MIC rapidly within 2 hours with an EA rate > 90% for 7 antimicrobials. The rapid AST detected by the ATP luminescence method will contribute toward both appropriate antimicrobial treatment and reduction in medication and admission charges. In the future, other species of bacteria will be evaluated by our ATP method. Disclosures All authors: No reported disclosures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.