In most colorectal cancers, Wnt/β-catenin signaling is activated by loss-of-function mutations in the () gene and plays a critical role in tumorigenesis. Tankyrases poly(ADP-ribosyl)ate and destabilize Axins, a negative regulator of β-catenin, and upregulate β-catenin signaling. Tankyrase inhibitors downregulate β-catenin and are expected to be promising therapeutics for colorectal cancer. However, colorectal cancer cells are not always sensitive to tankyrase inhibitors, and predictive biomarkers for the drug sensitivity remain elusive. Here we demonstrate that the short-form mutations predict the sensitivity of colorectal cancer cells to tankyrase inhibitors. By using well-established colorectal cancer cell lines, we found that tankyrase inhibitors downregulated β-catenin in the drug-sensitive, but not resistant, colorectal cancer cells. The drug-sensitive cells showed higher Tcf/LEF transcriptional activity than the resistant cells and possessed "short" truncated APCs lacking all seven β-catenin-binding 20-amino acid repeats (20-AARs). In contrast, the drug-resistant cells possessed "long" APC retaining two or more 20-AARs. Knockdown of the long APCs with two 20-AARs increased β-catenin, Tcf/LEF transcriptional activity and its target gene expression. Under these conditions, tankyrase inhibitors were able to downregulate β-catenin in the resistant cells. These results indicate that the long APCs are hypomorphic mutants, whereas they exert a dominant-negative effect on Axin-dependent β-catenin degradation caused by tankyrase inhibitors. Finally, we established 16 patient-derived colorectal cancer cells and confirmed that the tankyrase inhibitor-responsive cells harbor the short-form APC mutations. These observations exemplify the predictive importance of mutations, the most common genetic alteration in colorectal cancers, for molecular targeted therapeutics..
Oxidative stress and the generation of reactive oxygen species (ROS) have been implicated in the pathogenesis of cellular damage. These events have usually been reported in terms of oxidation of a reporter molecule such as 2P P,7P Pdichlorodihydrofluorescin diacetate (DCFH-DA). Treatment of HeLa cells with hemin or metalloporphyrins resulted in a rapid oxidation of DCFH in a time-and dose-dependent manner. This oxidation was inhibited by treatment of the cells with a large amount of superoxide dismutase and catalase, which is different from observations that these enzymes had no effect on the induction of heme oxygenase-1, a stress-induced protein, in hemin-treated cells. To examine the possibility that the oxidation of DCFH is independent of the generation of ROS, the oxidation was measured using hemoglobin-synthesizing erythroleukemia K562 cells. When K562 cells were treated with N N-aminolevulinic acid, a precursor of heme, oxidation of DCFH increased depending on the heme content in cells. Then DCFH-DA was oxidized directly with heme, hemoglobin, myoglobin and cytochrome c. These results suggest that oxidation of DCFH is not always related to the generation of ROS but may be related to heme content in cells. ß
Zinc finger E‐box binding protein 1 (ZEB1) and ZEB2 induce epithelial‐mesenchymal transition (EMT) and enhance cancer progression. However, the global view of transcriptional regulation by ZEB1 and ZEB2 is yet to be elucidated. Here, we identified a ZEB1‐regulated inflammatory phenotype in breast cancer cells using chromatin immunoprecipitation sequencing and RNA sequencing, followed by gene set enrichment analysis (GSEA) of ZEB1‐bound genes. Knockdown of ZEB1 and/or ZEB2 resulted in the downregulation of genes encoding inflammatory cytokines related to poor prognosis in patients with cancer, including IL6 and IL8, therefore suggesting that ZEB1 and ZEB2 have similar functions in terms of the regulation of production of inflammatory cytokines. Antibody array and ELISA experiments confirmed that ZEB1 controlled the production of the IL‐6 and IL‐8 proteins. The secretory proteins regulated by ZEB1 enhanced breast cancer cell proliferation and tumor growth. ZEB1 expression in breast cancer cells also affected the growth of fibroblasts in cell culture, and the accumulation of myeloid‐derived suppressor cells in tumors in vivo. These findings provide insight into the role of ZEB1 in the progression of cancer, mediated by inflammatory cytokines, along with the initiation of EMT.
Aberrant activation of Wnt/β‐catenin signaling causes tumorigenesis and promotes the proliferation of colorectal cancer cells. Porcupine inhibitors, which block secretion of Wnt ligands, may have only limited clinical impact for the treatment of colorectal cancer, because most colorectal cancer is caused by loss‐of‐function mutations of the tumor suppressor adenomatous polyposis coli (APC) downstream of Wnt ligands. Tankyrase poly(ADP‐ribosyl)ates (PARylates) Axin, a negative regulator of β‐catenin. This post‐translational modification causes ubiquitin‐dependent degradation of Axin, resulting in β‐catenin accumulation. Tankyrase inhibitors downregulate β‐catenin and suppress the growth of APC‐mutated colorectal cancer cells. Herein, we report a novel tankyrase‐specific inhibitor RK‐287107, which inhibits tankyrase‐1 and ‐2 four‐ and eight‐fold more potently, respectively, than G007‐LK, a tankyrase inhibitor that has been previously reported as effective in mouse xenograft models. RK‐287107 causes Axin2 accumulation and downregulates β‐catenin, T‐cell factor/lymphoid enhancer factor reporter activity and the target gene expression in colorectal cancer cells harboring the shortly truncated APC mutations. Consistently, RK‐287107 inhibits the growth of APC‐mutated (β‐catenin‐dependent) colorectal cancer COLO‐320DM and SW403 cells but not the APC‐wild (β‐catenin‐independent) colorectal cancer RKO cells. Intraperitoneal or oral administration of RK‐287107 suppresses COLO‐320DM tumor growth in NOD‐SCID mice. Rates of tumor growth inhibition showed good correlation with the behavior of pharmacodynamic biomarkers, such as Axin2 accumulation and MYC downregulation. These observations indicate that RK‐287107 exerts a proof‐of‐concept antitumor effect, and thus may have potential for tankyrase‐directed molecular cancer therapy.
The canonical WNT pathway plays an important role in cancer pathogenesis. Inhibition of poly(ADP-ribose) polymerase catalytic activity of the tankyrases (TNKS/TNKS2) has been reported to reduce the Wnt/β-catenin signal by preventing poly ADP-ribosylation-dependent degradation of AXIN, a negative regulator of Wnt/β-catenin signaling. With the goal of investigating the effects of tankyrase and Wnt pathway inhibition on tumor growth, we set out to find small-molecule inhibitors of TNKS/TNKS2 with suitable drug-like properties. Starting from 1a, a high-throughput screening hit, the spiroindoline derivative 40c (RK-287107) was discovered as a potent TNKS/TNKS2 inhibitor with >7000-fold selectivity against the PARP1 enzyme, which inhibits WNT-responsive TCF reporter activity and proliferation of human colorectal cancer cell line COLO-320DM. RK-287107 also demonstrated dose-dependent tumor growth inhibition in a mouse xenograft model. These observations suggest that RK-287107 is a promising lead compound for the development of novel tankyrase inhibitors as anticancer agents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.