Two partial cDNA clones (Protein kinase C alpha and Protein kinase C iota), each of which encoded a different member of PKC-protein family, were isolated using RT-PCR from mRNA of Bombyx mori. The full-length cDNAs were isolated using SMART-RACE. The cDNAs were expressed in HepG2 cells and the recombinant proteins were partially purified using an affinity chromatography. Protein kinase C alpha (BPKC alpha) showed a calcium-dependent kinase activity of histones. Whereas protein kinase C iota (BPKC iota) showed a calcium-independent activity. Bisindolyl maleimide I, a PKC inhibitor, inhibited these kinase activities. Furthermore, in vitro BPKC alpha interacted and phosphorylated two proteins expressed in the brain of Bombyx mori: Rab protein, which plays important roles in the vesicle transport in the brain, and bMBD2/3, which is a methyl DNA-binding protein and regulates transcription. These results suggest that these PKCs phosphorylate various substrate proteins and function in the brain of Bombyx mori.
Rab proteins play fundamental roles in the regulation of membrane traffic. Previously, from the brain of Bombyx mori we isolated two cDNA clones (BRab1 and BRab14), each of which encoded a different member of Rab-protein family and was expressed in Escherichia coli and purified using an affinity chromatography. In this study, one cDNA clone (BRab8) was isolated from a cDNA library from the brain of B. mori. The recombinant protein was expressed in E. coli and purified. Next, the phosphorylations of these three purified BRab proteins were examined, using mammalian protein kinases in vitro. Protein kinase C (PKC) phosphorylated BRab8 and BRab14 proteins. Protein kinase A faintly phosphorylated BRab8 and BRab14 proteins. Calcium/calmodulin-dependent protein kinase faintly phosphorylated BRab8 protein. Next, brains of B. mori were dissected and homogenized. The homogenate showed a calcium-dependent protein kinase activity of BRab8 and BRab14 proteins. So PKC from the brain of B. mori was partially purified by a sequence of chromatographies on DEAE-Cellulofine and affinity chromatography. This PKC phosphorylated BRab8 and BRab14 proteins. These results suggest that the function of Rab proteins in the brain of B. mori is regulated by calcium-dependent protein kinases.
We developed a system for bioconverting diverse compounds using P450s produced in Escherichia coli. Vectors for the expressing various P450 cDNAs quickly and easily in E. coli were developed by using several restriction enzyme sites. Three types of P450 (2C2, 2C29, and 2D22) were produced using these plasmids. Substrates were directly added to the incubation medium and metabolized. To obtain pure product from the medium, we first tried production of P450 in synthetic medium. The amount of another P450 2C43 produced in the synthetic medium was similar to the amount produced in Luria broth (LB) medium. Next, estradiol, a steroid, was added as a substrate, incubated, and the metabolite was extracted and analyzed by high-performance liquid chromatography. The metabolite extracted from synthetic medium was purer than that obtained from LB medium. Three P450s (2C29, 2C2, and 2A4) metabolized testosterone at different positions. P450 2C29 metabolized 7-ethoxycoumarin, androstendione, and dehydroepiandrosterone in this medium. P450s produced in the synthetic medium may be useful for producing various modified compounds for high-throughput screening.
A cDNA clone encoding methyl DNA binding domain-containing protein (bMBD2/3) was obtained by homology searches using a Bombyx mori fat body cDNA library. The cDNA encoded a polypeptide with 249 amino acids sharing 54% similarity with the methyl DNA binding protein from Drosophila melanogaster. To characterize the biochemical properties of bMBD2/3, the clone was expressed in Escherichia coli as His-tagged protein. The recombinant protein was purified to homogeneity using Ni-NTA superflow resin and heparin agarose. The protein showed specific methyl DNA binding activity and was phosphorylated by protein kinase in vitro. Immunoblotting using the purified antibody indicated that bMBD2/3 was expressed in almost all tissues. Using west-western blotting analysis, some proteins that interact with bMBD2/3 were identified in the brain. This is the first report that insect MBD is phosphorylated and is present in adult tissues. These results suggest that bMBD2/3 plays important roles in the DNA methylation-specific transcription of Bombyx mori.Abbreviation:EMSAElectro Phoretic Mobility Shift Assay
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.