Juvenile myelomonocytic leukemia (JMML), a rare and aggressive myelodysplastic/myeloproliferative neoplasm that occurs in infants and during early childhood, is characterized by excessive myelomonocytic cell proliferation. More than 80% of patients harbor germ line and somatic mutations in RAS pathway genes (eg, ,, ,, and ), and previous studies have identified several biomarkers associated with poor prognosis. However, the molecular pathogenesis of 10% to 20% of patients and the relationships among these biomarkers have not been well defined. To address these issues, we performed an integrated molecular analysis of samples from 150 JMML patients. RNA-sequencing identified tyrosine kinase fusions (, and ) in 3 of 16 patients (18%) who lacked canonical RAS pathway mutations. Crizotinib, an ALK/ROS1 inhibitor, markedly suppressed fusion-positive JMML cell proliferation in vitro. Therefore, we administered crizotinib to a chemotherapy-resistant patient with the fusion who subsequently achieved complete molecular remission. In addition, crizotinib also suppressed proliferation of JMML cells with canonical RAS pathway mutations. Genome-wide methylation analysis identified a hypermethylation profile resembling that of acute myeloid leukemia (AML), which correlated significantly with genetic markers with poor outcomes such as gene mutations, 2 or more genetic mutations, an AML-type expression profile, and expression. In summary, we identified recurrent activated fusions in JMML patients without canonical RAS pathway gene mutations and revealed the relationships among biomarkers for JMML. Crizotinib is a promising candidate drug for the treatment of JMML, particularly in patients with fusions.
Cancer care is being revolutionized by immunotherapies such as immune checkpoint inhibitors, engineered T cell transfer, and cell vaccines. The bispecific T cell-redirecting antibody (TRAB) is one such promising immunotherapy, which can redirect T cells to tumor cells by engaging CD3 on a T cell and an antigen on a tumor cell. Because T cells can be redirected to tumor cells regardless of the specificity of T cell receptors, TRAB is considered efficacious for less immunogenic tumors lacking enough neoantigens. Its clinical efficacy has been exemplified by blinatumomab, a bispecific T cell engager targeting CD19 and CD3, which has shown marked clinical responses against hematological malignancies. However, the success of TRAB in solid tumors has been hampered by the lack of a target molecule with sufficient tumor selectivity to avoid "on-target off-tumor" toxicity. Glypican 3 (GPC3) is a highly tumor-specific antigen that is expressed during fetal development but is strictly suppressed in normal adult tissues. We developed ERY974, a whole humanized immunoglobulin G-structured TRAB harboring a common light chain, which bispecifically binds to GPC3 and CD3. Using a mouse model with reconstituted human immune cells, we revealed that ERY974 is highly effective in killing various types of tumors that have GPC3 expression comparable to that in clinical tumors. ERY974 also induced a robust antitumor efficacy even against tumors with nonimmunogenic features, which are difficult to treat by inhibiting immune checkpoints such as PD-1 (programmed cell death protein-1) and CTLA-4 (cytotoxic T lymphocyte-associated protein-4). Immune monitoring revealed that ERY974 converted the poorly inflamed tumor microenvironment to a highly inflamed microenvironment. Toxicology studies in cynomolgus monkeys showed transient cytokine elevation, but this was manageable and reversible. No organ toxicity was evident. These data provide a rationale for clinical testing of ERY974 for the treatment of patients with GPC3-positive solid tumors.
A novel MEF2D-BCL9 fusion we identified characterizes a novel subset of pediatric ALL, predicts poor prognosis, and may be a candidate for novel molecular targeting.
The "light-up" RNA aptamer-Hoechst pair can be used as a fluorescent tag to monitor transcription processes.
We have designed a strategy to generate a light-up fluorophore-aptamer pair based on a down-modification of a conventional DNA-staining dye to suppress its affinity to the original dsDNA targets, followed by reselection of aptamers that would bind to the modified dye. Following this line, we prepared a micropolarity-sensitive Hoechst derivative possessing two tBu groups with low affinity to the usual AT-rich dsDNA targets. DNA aptamers selected in vitro from a random pool worked as triggers to enhance the fluorescence of an otherwise nonfluorescent Hoechst derivative, and the shortened 25-mer sequence showed remarkable enhancement (light-up). The 25-mer sequence was split into binary aptamer probes, thus enabling us to detect a target nucleic acid sequence with a single-nucleotide resolution by use of unmodified DNA as a probe.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.