It is shown that the polygonal invariant curve of the ultradiscrete QRT (uQRT) map, which is a two-dimensional piecewise linear integrable map, is the complement of the tentacles of a tropical elliptic curve on which the curve has a group structure in analogy to classical elliptic curves. Through the addition formula of a tropical elliptic curve, a tropical geometric description of the uQRT map is then presented. This is a natural tropicalization of the geometry of the QRT map found by Tsuda. Moreover, the uQRT map is linearized on the tropical Jacobian of the corresponding tropical elliptic curve in terms of the Abel–Jacobi map. Finally, a formula concerning the period of a point in the uQRT map is given, and an exact solution to its initial-value problem is constructed by using the ultradiscrete elliptic theta function.
Abstract. We present a solvable two-dimensional piecewise linear chaotic map that arises from the duplication map of a certain tropical cubic curve. Its general solution is constructed by means of the ultradiscrete theta function. We show that the map is derived by the ultradiscretization of the duplication map associated with the Hesse cubic curve. We also show that it is possible to obtain the non-trivial ultradiscrete limit of the solution in spite of a problem known as 'the minus-sign problem.'
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.