Very recently, electric‐field‐induced superconductivity in an insulator was realized by tuning charge carrier to a high density level (1 × 1014 cm−2). To increase the maximum attainable carrier density for electrostatic tuning of electronic states in semiconductor field‐effect transistors is a hot issue but a big challenge. Here, ultrahigh density carrier accumulation is reported, in particular at low temperature, in a ZnO field‐effect transistor gated by electric double layers of ionic liquid (IL). This transistor, called an electric double layer transistor (EDLT), is found to exhibit very high transconductance and an ultrahigh carrier density in a fast, reversible, and reproducible manner. The room temperature capacitance of EDLTs is found to be as large as 34 µF cm−2, deduced from Hall‐effect measurements, and is mainly responsible for the carrier density modulation in a very wide range. Importantly, the IL dielectric, with a supercooling property, is found to have charge‐accumulation capability even at low temperatures, reaching an ultrahigh carrier density of 8×1014 cm−2 at 220 K and maintaining a density of 5.5×1014 cm−2 at 1.8 K. This high carrier density of EDLTs is of great importance not only in practical device applications but also in fundamental research; for example, in the search for novel electronic phenomena, such as superconductivity, in oxide systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.