Electronic portfolios (E-portfolios) are crucial means for workplace-based assessment and feedback. Although E-portfolios provide a useful approach to view each learner's progress, so far options for personalized feedback and potential data about a learner's performances at the workplace often remain unexploited. This paper advocates that E-portfolios enhanced with learning analytics, might increase the quality and efficiency of workplace-based feedback and assessment in professional education. Based on a 5-phased iterative design approach, an existing E-portfolio environment was enhanced with learning analytics in professional education. First, information about crucial professional activities for professional domains and suited assessment instruments were collected (phase 1). Thereafter probabilistic student models were defined (phase 2). Next, personalized feedback and visualization of the personal development over time were developed (phase 3). Then the prototype of the E-portfolio-including the student models and feedback and visualization modules-were implemented in professional training-programs (phase 4). Last, evaluation cycles took place and 121 students and 30 supervisors from five institutes for professional education evaluated the perceived usefulness of the design (phase 5). It was concluded that E-portfolios with learning analytics were perceived to assist the development of students' professional competencies and that the design is only successful when developed and implemented through the eyes of the users. Feedback and assessment methods based upon learning analytics can stimulate learning at the workplace in the long run. Practical, technological and ethical challenges are discussed.& Marieke van der Schaaf m.f.vanderschaaf@uu.nl;
Learning in non-stationary environments is a challenging task which requires the updating of predictive models to deal with changes in the underlying probability distribution of the problem, i.e., dealing with concept drift. Most work in this area is concerned with updating the learning system so that it can quickly recover from concept drift, while little work has been dedicated to investigating what type of predictive model is most suitable at any given time. This paper aims to investigate the benefits of online model selection for predictive modelling in nonstationary environments. A novel heterogeneous ensemble approach is proposed to intelligently switch between different types of base models in an ensemble to increase the predictive performance of online learning in nonstationary environments. This approach is Heterogeneous Dynamic Weighted Majority (HDWM). It makes use of "seed" learners of different types to maintain ensemble diversity, overcoming problems of existing dynamic ensembles that may undergo loss of diversity due to the exclusion of base learners. The algorithm has been evaluated on artificial and real-world data streams against existing well-known approaches such as a heterogeneous Weighted Majority Algorithm (WMA) and a homogeneous Dynamic Weighted Majority (DWM). The results show that HDWM performed significantly better than WMA in non-stationary environments. Also, when recurring concept drifts were present, the predictive performance of HDWM showed an improvement over DWM.
The key trends in emerging ICT integration choices for cost‐effective, flexible knowledge integration, work‐flow‐embedded evaluation and eCRM‐driven value innovation are examined. Enterprise knowledge integration initiatives can create socio‐technical and cultural tensions as well as possible straitjacketing of business process architectures thus suppressing responsive business re‐engineering and causing loss of competitive advantage for some companies. A framework, C‐assure, is presented for optimising knowledge integration, impact analysis and evaluation to support innovation throughout the various interacting enterprise lifecycles.
Financial technology, or Fintech, represents an emerging industry on the global market. With online transactions on the rise, the use of IT for automation of financial services is of increasing importance. Fintech enables institutions to deliver services to customers worldwide on a 24/7 basis. Its services are often easy to access and enable customers to perform transactions in real-time. In fact, advantages such as these make Fintech increasingly popular among clients. However, since Fintech transactions are made up of information, ensuring security becomes a critical issue. Vulnerabilities in such systems leave them exposed to fraudulent acts, which cause severe damage to clients and providers alike. For this reason, techniques from the area of Machine Learning (ML) are applied to identify anomalies in Fintech applications. They target suspicious activity in financial datasets and generate models in order to anticipate future frauds. We contribute to this important issue and provide an evaluation on anomaly detection methods for this matter. Experiments were conducted on several fraudulent datasets from real-world and synthetic databases, respectively. The obtained results confirm that ML methods contribute to fraud detection with varying success. Therefore, we discuss the effectiveness of the individual methods with regard to the detection rate. In addition, we provide an analysis on the influence of selected features on their performance. Finally, we discuss the impact of the observed results for the security of Fintech applications in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.