SUMMARYCardiogenesis within embryos or associated with heart repair requires stem cell differentiation into energetically competent, contracting cardiomyocytes. While it is widely accepted that the coordination of genetic circuits with developmental bioenergetics is critical to phenotype specification, the metabolic mechanisms that drive cardiac transformation are largely unknown. Here, we aim to define the energetic requirements for and the metabolic microenvironment needed to support the cardiac differentiation of embryonic stem cells. We demonstrate that anaerobic glycolytic metabolism, while sufficient for embryonic stem cell homeostasis, must be transformed into the more efficient mitochondrial oxidative metabolism to secure cardiac specification and excitation-contraction coupling. This energetic switch was programmed by rearrangement of the metabolic transcriptome that encodes components of glycolysis, fatty acid oxidation, the Krebs cycle, and the electron transport chain. Modifying the copy number of regulators of mitochondrial fusion and fission resulted in mitochondrial maturation and network expansion, which in turn provided an energetic continuum to supply nascent sarcomeres. Disrupting respiratory chain function prevented mitochondrial organization and compromised the energetic infrastructure, causing deficient sarcomerogenesis and contractile malfunction. Thus, establishment of the mitochondrial system and engagement of oxidative metabolism are prerequisites for the differentiation of stem cells into a functional cardiac phenotype. Mitochondria-dependent energetic circuits are thus critical regulators of de novo cardiogenesis and targets for heart regeneration.
Members of the transforming growth factor beta1 (TGF-beta) superfamily--namely, TGF-beta and BMP2--applied to undifferentiated murine embryonic stem cells up-regulated mRNA of mesodermal (Brachyury) and cardiac specific transcription factors (Nkx2.5, MEF2C). Embryoid bodies generated from stem cells primed with these growth factors demonstrated an increased potential for cardiac differentiation with a significant increase in beating areas and enhanced myofibrillogenesis. In an environment of postmitotic cardiomyocytes, stem cells engineered to express a fluorescent protein under the control of a cardiac promoter differentiated into fluorescent ventricular myocytes beating in synchrony with host cells, a process significantly enhanced by TGF-beta or BMP2. In vitro, disruption of the TGF-beta/BMP signaling pathways by latency-associated peptide and/or noggin prevented differentiation of stem cells. In fact, only host cells that secrete a TGF-beta family member induced a cardiac phenotype in stem cells. In vivo, transplantation of stem cells into heart also resulted in cardiac differentiation provided that TGF-beta/BMP2 signaling was intact. In infarcted myocardium, grafted stem cells differentiated into functional cardiomyocytes integrated with surrounding tissue, improving contractile performance. Thus, embryonic stem cells are directed to differentiate into cardiomyocytes by signaling mediated through TGF-beta/BMP2, a cardiac paracrine pathway required for therapeutic benefit of stem cell transplantation in diseased heart.
Embryonic stem cells have the distinct potential for tissue regeneration, including cardiac repair. Their propensity for multilineage differentiation carries, however, the liability of neoplastic growth, impeding therapeutic application. Here, the tumorigenic threat associated with embryonic stem cell transplantation was suppressed by cardiac-restricted transgenic expression of the reprogramming cytokine TNF-α, enhancing the cardiogenic competence of recipient heart. The in vivo aptitude of TNF-α to promote cardiac differentiation was recapitulated in embryoid bodies in vitro. The procardiogenic action required an intact endoderm and was mediated by secreted cardio-inductive signals. Resolved TNF-α–induced endoderm-derived factors, combined in a cocktail, secured guided differentiation of embryonic stem cells in monolayers produce cardiac progenitors termed cardiopoietic cells. Characterized by a down-regulation of oncogenic markers, up-regulation, and nuclear translocation of cardiac transcription factors, this predetermined population yielded functional cardiomyocyte progeny. Recruited cardiopoietic cells delivered in infarcted hearts generated cardiomyocytes that proliferated into scar tissue, integrating with host myocardium for tumor-free repair. Thus, cardiopoietic programming establishes a strategy to hone stem cell pluripotency, offering a tumor-resistant approach for regeneration.
With favorable regenerative and immunotolerant profiles, patient-derived human mesenchymal stem cells (hMSCs) are increasingly considered in cell therapy. Derived from bone marrow (BM) and standardized with culture in fetal bovine serum (FBS), translation of hMSC-based approaches is impeded by protracted expansion times, risk of xenogenic response, and exposure to zoonoses. Here, human platelet lysate adherent to good manufacturing practices (GMP-hPL) provided a nonzoonotic adjuvant that enhanced the capacity of BM-hMSC to proliferate. The nurturing benefit of GMP-hPL was generalized to hMSC from adipose tissue evaluated as an alternative to bone marrow. Long-term culture in GMP-hPL maintained the multipotency of hMSC, while protecting against clonal chromosomal instability detected in the FBS milieu. Proteomic dissection identified TGF-β, VEGF, PDGF, FGF, and EGF as highly ranked effectors of hPL activity, revealing a paradigm of healing that underlies platelet lysate adjuvancy. Thus, GMP-adherent human platelet lysate accelerates hMSC proliferation with no chromosomal aberrancy, through an innate repair paradigm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.