With the improvement of seed quality, Brassica rapa oilseed germplasm went through 2 major breeding bottlenecks during the introgression of genes for zero erucic acid content and low glucosinolate content, respectively. This study investigates the impact of these bottlenecks on the genetic diversity in European winter B. rapa by comparing 3 open-pollinated cultivars, each representing a different breeding period. Diversity was estimated on 32 plants per cultivar, with 16 simple sequence repeat (SSR) markers covering each of the B. rapa linkage groups. There was no significant loss of genetic diversity over the 3 cultivars as indicated by allele number (ranging from 59 to 55), mean allele number (from 3.68 to 3.50), Shannon information index (from 0.94 to 0.87) and expected heterozygosity (from 0.53 to 0.48). About 83% of the total variation was attributed to within-cultivar variation, and the remaining 17% to between-cultivar variation by analysis of molecular variance (AMOVA). Individual plants were separated into the 3 cultivars by principal coordinate analysis (PCoA). In conclusion, genetic diversity within cultivars was high and quality breeding in B. rapa did not significantly reduce the genetic diversity of B. rapa winter cultivars, so there is no risk of decline in performance due to quality improvement.
High seedling mortality during the establishment phase of cocoa has become a critical constraint to sustainable cocoa farming. The objective of this study was to develop varieties with higher seedling survival compared with cultivars currently recommended for planting in denuded regions. Thirty‐seven families composed into two sets of 18 (families from recommended clones) and 19 (families from recently introduced clones) were evaluated for field survival under full sunlight and dry weather conditions. Families differed significantly for vigour (increase in trunk cross‐sectional area, TCSA) and percentage of survived seedlings by the end of the dry weather conditions. Survival and vigour were significantly correlated in only one set of families. The contribution of general combining ability (GCA) to seedling survival was low to moderate. An Amelonado clone and clones from the Iquitos genetic group had negative GCA estimates for both increase in TCSA and survival. Clones of Scavina origin had the most positive contribution to survival. The key outcome of the study was that cocoa families with higher establishment success can be obtained from the currently available germplasm.
The use of plant biomass as substrate for biogas production has recently become of major interest in Europe. Winter Brassica rapa produces high early biomass and could be grown as a pre-crop harvested early in the year followed by a second crop such as maize. The objectives of this study were to estimate heterosis and combining ability of 15 European winter B. rapa cultivars for biomass yield at end of flowering. A half-diallel without reciprocals was conducted among cultivars to produce 105 crosses. These crosses and their parents were evaluated in two years at two locations in Northern Germany. Data collected were days to flowering (DTF), fresh biomass yield (FBY), dry matter content (DMC) and dry biomass yield (DBY). The mean DBY was 5.3 t/ha for the parental cultivars and 5.6 t/ha for their crosses. The crosses surpassed on average their parents by 7.6% for FBY and 5.9% for DBY whereas DMC was 1.4% higher in the parents. Maximum mid parent heterosis was 21.0% for FBY and 30.4% for DBY. Analysis of variance showed that genetic variance was mainly due to specific combining ability (SCA). The correlation between parental performance and general combining ability (GCA) was 0.42** for FBY and 0.53** for DBY. In conclusion, the amount of heterosis in crosses between European winter B. rapa cultivars is not very high on average, but can be up to 30% in the best crosses. Selection of parental combinations with high specific combining ability to produce synthetic cultivars can rapidly improve biomass yield.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.