Proper dry cow management is critical not only for subsequent milk production and fertility but also for mastitis control. A phenomenon of immunosuppression was commonly observed in transition cows, an example being the high susceptibility of the mammary gland during early the dry period to new infectious agents. Polymorphonuclear neutrophils (PMN) play important defence roles in the mammary gland of newly dried cows. One of the bactericidal mechanisms of PMN is through producing reactive oxygen species (ROS), which can be efficiently quantified by chemiluminescence (CL) assay. In the current study, the potential of intramammary application of a commercial Enterococcus faecium SF68 (SF68) product to enhance the local innate immunity of newly dried mammary glands was evaluated based on the CL assay. The preliminary experiments in vitro indicated virtual dose-responsiveness of ROS generation from three different cell preparations, bovine blood PMN, bovine blood PMN pre-conditioned with cow milk, and the post-diapedesis model somatic cells from cow milk, on their exposure to phorbol 12-myristate 13-acetate (PMA), viable SF68, and ultrasonicated SF68, but not dry-heated SF68. Because ultrasonication treatment was found to profoundly enhance the immunogenicity of SF68 in vitro, in the following animal trial, single infusion of either 5 or 10×107 original cfu of ultrasonicated SF68 was randomly applied to the front quarters and phosphate-bufferedsaline (PBS) applied to the rear quarters of each of the four experimental cows on the first day of milk stasis. The results showed that within the first post-infusion week, ultrasonicated SF68 induced a faster and greater (P<0·05) recruitment of PMN into mammary lumen with no apparent local or systemic inflammatory sign. Meanwhile, ultrasonicated SF68 also induced a greater (P<0·05) ROS production in response to PMA challenge by in situ somatic cells of mammary secretion. Taken together, ultrasonicated SF68 modulated ROS generation of bovine neutrophils, and would be a potential enhancer of udder innate immunity in drying-off dairy cows. More thorough work is warranted.
The contribution of matrix metalloproteinases (MMP) to timely discharge of the placenta from bovine uterus at parturition is yet inconclusive, partly because of the presence of multiple MMP forms in situ. In the current study, the expression of different gelatinase subtypes on non-retaining placentas of Holstein cows was fingerprinted by using gelatin zymography. Different topographic regions on the placenta were measured separately, including the placentome-like structure and the fetal and maternal sides of interplacentomal placenta, all sampled from the central and peripheral areas of the placenta, respectively. The spontaneously ruptured umbilical cords were cross-sectioned as fetus end, middle and placenta end also for separate measurement. Body fluids including blood samples from the parturient cows, their neonatal calves and umbilical cord, as well as fetal fluids and the first colostrum were measured concomitantly. Results showed multiple forms of gelatinases subtypes in the placenta tissues and body fluids, including neutrophil gelatinase-associated lipocalin (NGAL)-MMP-9 complex, both the latent and active forms of MMP-2 and MMP-9; of them, the latent forms were much more abundantly and frequently expressed than the active forms. NGAL-MMP-9 complex was more prevalently present in the body fluids than in the placenta tissues. No distinguishable pattern of the expression of any gelatinase subtype was observed among the placentome-like structure, interplacentomal placenta and umbilical cord, or between fetal and maternal sides. Nonetheless, for interplacentomal placenta, proMMP-9 expression was higher in the central than in the peripheral area. In addition, proMMP-2 expression was higher in the rupture end (fetus end) than the placenta end of the umbilical cord. In conclusion, the current validated gelatin zymography detected a gradient proMMP-9 expression on the non-retaining placenta of cows in reverse to the proximity to the umbilical insertion point, and a gradient proMMP-2 expression on a section of the umbilical cord in reverse to the proximity to the rupture site, suggesting roles played by gelatinases in normal discharge of the placenta at term.
Several factors affect milk production in cows, including parity which can affect milk quality and health of cows. One of the essential process that occurs in the mammary gland at the drying stage is known as Involution which removes the milk-producing epithelial cells when they become redundant. In this stage, also, the γ-globulin (Ig), lactoferrin (Lf), and bovine serum albumin (BSA) levels which are the major protective proteins in the mammary secretion increased strongly. Matrix metalloproteinase-2 and-9 (MMP-2,-9) are enzymes secreted by leukocytes that play an important role in the remodeling mechanisms of the mammary gland during involution. Therefore, the objective of this study was to compare the protective protein components and the proteolytic capacity of the mammary secretion in primiparous and multiparous cows during the first 2 weeks after drying off. Six crossbred Holstein dairy cows with differential parity, including the 1 st , 2 nd , and 3 rd parities, were used in this study. Mammary secretions were collected from the four quarters on d 0, 3, 7, and 14 of drying off and analyzed for protective protein components and the proteolytic capacity. Results showed that the total protein concentration and the proteinous component bands, including Ig, Lf, and BSA, were significantly higher in multiparous cows than in primiparous cows (P < 0.05) on d 7 and 14 of drying off. In contrast, the casein protein level decreased in multiparous cows compared to primiparous cows on d 7 and 14 of drying off. The level of MMP-9 in the mammary secretion of primiparous cows increased temporarily only on d 3, whereas that of multiparous cows gradually increased up to d 7. It can be concluded that the mammary glands in the multiparous cows underwent significant changes during the dry period. These changes most probably indicate the need of the mammary glands to deal with the characteristics of the involution.
A problem for dairy cows following milk stasis is to cope with a high risk of intramammary infection and there is a need to initiate an extensive renewal of secretory modules in mammary glands so that milk production in next lactation may be optimized. We recently reported that ultrasonicated Enterococcus faecium SF68 (SF68) is compatible with cow mammary glands and an enhancer of innate immunity during the immediate post-milk stasis period. The current study further examines the concomitant effect of ultrasonicated SF68 on mammary tissue remodeling. Four Holstein cows each received intramammary infusions of regular antibiotic dry-cow formula (positive control) and two different doses of SF68 in different quarters. Analyses of individual quarter secretion samples showed faster neutrophil infiltration, earlier modifications in protein composition, including caseins and lactoferrins, as well as more prompt elevation of the specific unit of 92-kDa matrix metalloproteinase 9 (MMP9) in SF68-infused quarters compared to the positive controls. Intramammary infusion of ultrasonicated SF68 seems able to accelerate the regression of mammary synthetic capacity and potentiate the breakdown of glandular extracellular matrix, indicating a more efficient mammary gland involution. Correlation analyses imply that the ability of ultrasonicated SF68 to induce faster neutrophil chemotaxis and the associated MMP9 release is partly responsible.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.