Extreme transistor scaling trends in silicon technology are soon to reach a point where manufactured systems will suffer from limited device reliability and severely reduced life-time, due to early transistor failures, gate oxide wear-out, manufacturing defects, and radiation-induced soft errors (SER). In this paper we present a low-cost technique to harden a microprocessor pipeline and caches against these reliability threats. Our approach utilizes online built-in self-test (BIST) and microarchitectural checkpointing to detect, diagnose and recover the computation impaired by silicon defects or SER events. The approach works by periodically testing the processor to determine if the system is broken. If so, we reconfigure the processor to avoid using the broken component. A similar mechanism is used to detect SER faults, with the difference that recovery is implemented by re-execution. By utilizing low-cost techniques to address defects and SER, we keep protection costs significantly lower than traditional fault-tolerance approaches while providing high levels of coverage for a wide range of faults. Using detailed gate-level simulation, we find that our approach provides 95% and 99% coverage for silicon defects and SER events, respectively, with only a 14% area overhead.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.