Highly efficient removal of mercury(II) ions (Hg(II)) from water has been reported by employing polymer-brush-functionalized magnetic nanoparticles (MNPs). Surface-initiated conventional radical polymerization (SI-cRP) was used to grow poly(2-aminoethyl methacrylate hydrochloride) (poly-AEMA·HCl) polymer chains on magnetite nanoparticles (Fe3O4), followed by the transformation of pendant amino groups into dithiocarbamate (DTC) groups, which showed high chelating affinity toward Hg(II) ions. This polymer-brush-based DTC-functionalized MNP (MNPs-polyAEMA·DTC) platform showed the complete removal of Hg(II) from aqueous solutions. The Hg(II) ion removal capacity and efficiency of MNPs-polyAEMA·DTC were compared with its monolayer analogue, which was derived from the direct transformation of amino groups of (3-aminopropyl) triethoxysilane (APTES)-functionalized MNPs (MNPs-APTES) to DTC functional groups (MNPs-DTC). The surface chemical modifications and higher chelating functional group density, in the case of MNPs-polyAEMA·DTC, were ascertained by transmission electron microscopy (TEM), thermogravimetric analysis (TGA), physical property measurement system (PPMS), attenuated total reflectance infrared (ATR-IR) spectroscopy, and X-ray photoelectron spectroscopy (XPS). The Hg(II) ion removal capacity and efficiency of monolayer and polymer-brush-based DTC-functionalized MNPs (MNPs-DTC and MNPs-polyAEMA·DTC, respectively) were evaluated and compared by studying the effect of various factors on the percentage removal of Hg(II) such as adsorbent amount, temperature, and contact time. Furthermore, the adsorption behavior of MNPs-DTC and MNPs-polyAEMA·DTC was analyzed by applying Langmuir and Freundlich adsorption isotherm models. In addition, the adsorption thermodynamics, as well as the adsorption kinetics, were also evaluated in detail. The higher surface functional group density of MNPs-polyAEMA·DTC led to superior remediation characteristics toward Hg(II) ions than its monolayer analogue.
The toxic and non-biodegradable nature of organic dyes necessitates the design and synthesis of novel adsorbents for their effective removal from the environment. This study reports an effective remediation behavior of surface-functionalized silica gel against water-soluble cationic dyes (up to 98 % removal). Thiol groups were functionalized at the surface of silica gel (SiO2–SH). The surface-tethered –SH groups were further oxidized to sulfonic acid groups to generate the negatively charged moieties at the surface of silica gel (SiO2–SO3 H). The morphology of the developed adsorbents and the surface modifications were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). Uptake study of three cationic dyes, namely, rhodamine B (Rh B), rhodamine 6G (Rh 6G), and crystal violet (CV) with SiO2–SH and SiO2–SO3 H adsorbents was performed by varying the adsorbent amount, contact time, pH of solution, and temperature. The presence of negatively charged species at the surface of SiO2–SO3 H results in an increased electrostatic interaction with the cationic dyes, which leads to better remediation characteristics for SiO2–SO3 H as compared to SiO2–SH. The reusability of the developed adsorbents was also assessed by investigating adsorption/desorption of dyes. The simple fabrication process provides a facile avenue to the adsorbents with efficient remediation towards cationic dyes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.