White matter hyperintensities (WMHs) are frequently seen on brain magnetic resonance imaging scans of older people. Usually interpreted clinically as a surrogate for cerebral small vessel disease, WMHs are associated with increased likelihood of cognitive impairment and dementia (including Alzheimer's disease [AD]). WMHs are also seen in cognitively healthy people. In this collaboration of academic, clinical, and pharmaceutical industry perspectives, we identify outstanding questions about WMHs and their relation to cognition, dementia, and AD. What molecular and cellular changes underlie WMHs? What are the neuropathological correlates of WMHs? To what extent are demyelination and inflammation present? Is it helpful to subdivide into periventricular and subcortical WMHs? What do WMHs signify in people diagnosed with AD? What are the risk factors for developing WMHs? What preventive and therapeutic strategies target WMHs? Answering these questions will improve prevention and treatment of WMHs and dementia.
Cerebral small vessel disease (SVD) is a major cause of stroke and dementia. Pathologically, three lesions are seen: small vessel arteriopathy, lacunar infarction, and diffuse white matter injury (leukoaraiosis). Appropriate experimental models would aid in understanding these pathologic states and also in preclinical testing of therapies. The objective was to perform a systematic review of animal models of SVD and determine whether these resemble four key clinicopathologic features: (1) small, discrete infarcts; (2) small vessel arteriopathy; (3) diffuse white matter damage; (4) cognitive impairment. Fifteen different models were included, under four categories: (1) embolic injuries (injected blood clot, photochemical, detergent-evoked); (2) hypoperfusion/ischaemic injury (bilateral common carotid occlusion/stenosis, striatal endothelin-1 injection, striatal mitotoxin 3-NPA); (3) hypertension-based injuries (surgical narrowing of the aorta, or genetic mutations, usually in the renin-angiotensin system); (4) blood vessel damage (injected proteases, endotheliumtargeting viral infection, or genetic mutations affecting vessel walls). Chronic hypertensive models resembled most key features of SVD, and shared the major risk factors of hypertension and age with human SVD. The most-used model was the stroke-prone spontaneously hypertensive rat (SHR-SP). No model described all features of the human disease. The optimal choice of model depends on the aspect of pathophysiology being studied.
J. Neurochem. (2010) 115, 814–828.
Abstract
Vascular cognitive impairment (VCI) encompasses vascular dementia and is the second most common cause of dementing illness after Alzheimer’s disease. The main causes of VCI are: cerebral small vessel disease; multi‐infarct dementia; strategic infarct (i.e. located in a functionally‐critical brain area); haemorrhage/microbleed; angiopathy (including cerebral amyloid angiopathy); severe hypoperfusion (e.g. cardiac arrhythmia); and hereditary vasculopathy (e.g. cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy, CADASIL). In this systematic analysis, we aimed to relate cognitive and neuropathological features of experimental models to clinical VCI. We extracted data from 107 studies covering 16 models. These included: brief global ischaemic insults (in rats, mice or gerbils); chronic global hypoperfusion (rats, mice, gerbils); chronic hypertension (in primates or stroke‐prone, spontaneously‐hypertensive rats); multiple ischaemic lesions because of intra‐vascular emboli (in rodents, rabbits or primates); strategic ischaemic lesions (in rats or mini‐pigs); generalised vasculopathies, because of mutant Notch3, hyperhomocysteinaemia, experimental diabetes mellitus or lack of cerebral vasodilator M5 receptors (rats or mice). Most cognitive testing showed deficits in working and reference memory. The lesions observed were microinfarcts, diffuse white matter lesions, hippocampal neuronal death, focal ischaemic lesions and micro‐haemorrhages. The most‐used model was bilateral carotid artery occlusion in rats, leading to chronic hypoperfusion and white matter injury.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.