Proarrhythmia, the development of new or worse arrhythmias in response to drug therapy, is a major limitation to the development and use of new drugs. There are different types of drug-induced proarrhythmia, including long-QT syndrome (LQTS), short-QT syndrome and proarrhythmia related to Na+-channel blockade/conduction impairment. By far the most important form of proarrhythmia at present is drug-induced LQTS and its associated characteristic tachyarrhythmia, torsades de pointes (TdP). TdP arises when cellular action potentials (APs) are excessively prolonged, leading to arrhythmogenic afterdepolarizations, especially early afterdepolarizations (EADs), which trigger complex re-entry in a substrate involving increased transmural dispersion of repolarization. In vitro screening, increasingly involving high-throughput assays, is used to assess potential candidate molecules and eliminate potentially problematic structures at an early stage of development. The most commonly used screening assays assess drug block of the K+ current carried by human ether-à-go-go (hERG) subunits, corresponding to the rapid delayed-rectifier K+ channel, the overwhelmingly most common target of TdP-inducing drugs. In addition, the effects of drugs on AP duration or the in vivo equivalent, QT interval, are often assessed in animal models. Methods available for repolarization-related proarrhythmic risk assessment include in vitro (Langendorff-perfused rabbit or guinea pig hearts) and in vivo models (such as alpha-adrenoceptor-stimulated rabbits, rabbits with reduced repolarization reserve due to block of slow delayed-rectifier current, animals with chronic atrioventricular block or animals with cardiac remodelling caused by congestive heart failure). In silico modelling may be helpful for molecular design of non-hERG blocking candidates and for optimization of compound selection (at the molecular and pharmacological profile levels). Finally, clinical evaluation of effects on electrocardiographic intervals (particularly QT) and cardiac rhythm are often needed, both prior to drug approval and after successful introduction on the market (postmarketing surveillance). The successful avoidance of proarrhythmic complications is a shared responsibility of the innovative pharmaceutical industry, regulatory authorities, partners in the clinical drug development phase and practicing physicians. This paper reviews the principal forms of proarrhythmia and the methods that can be used to minimize the risk of proarrhythmia in drug development and clinical practice, with particular emphasis on the most common and problematic form, acquired LQTS.
Various scientific and commercial applications require automated scalability and orchestration on cloud computing resources. However, extending applications with such automated scalability on an individual basis is not feasible. This paper investigates how such automated orchestration can be added to cloud applications without major reengineering of the application code. We suggest a generic architecture for an application level cloud orchestration framework, called MiCADO that supports various application scenarios on multiple heterogeneous federated clouds. Besides the generic architecture description, the paper also presents the first MiCADO reference implementation, and explains how the scalability of the Data Avenue service that is applied for data transfer in WS-PGRADE/gUSE based science gateways, can be improved. Performance evaluation of the implemented scalability based on up and downscaling experiments is presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.