The respiratory allergens that induce experimental Th cell type 2-dependent allergic lung inflammation may be grouped into two functional classes. One class of allergens, in this study termed type I, requires priming with adjuvants remote from the lung to overcome airway tolerogenic mechanisms that ordinarily preclude allergic responses to inhaled Ags. In contrast, the other, or type II, allergen class requires neither remote priming nor additional adjuvants to overcome airway tolerance and elicit robust allergic lung disease. In this study, we show in an experimental model that diverse type II allergens share in common proteolytic activity that is both necessary and sufficient for overcoming airway tolerance and induction of pulmonary allergic disease. Inactivated protease and protease-free Ag fragments showed no allergenic potency, demonstrating that only active protease acting on endogenous substrates was essential. Furthermore, induction of airway tolerance could be aborted and allergic lung disease established by simply adding purified protease to a type I allergen. Thus, exogenous proteases are common to type II allergens and may be generally required to overcome the innate resistance of the airway to Th cell type 2 activation and allergic inflammation, raising concern for their potential contribution to diseases such as asthma.
Clearance of recruited immune cells is necessary to resolve inflammatory reactions. We show here that matrix metalloproteinase 2 (MMP2), as part of an interleukin 13 (IL-13)-dependent regulatory loop, dampens inflammation by promoting the egress of inflammatory cells into the airway lumen. MMP2 −/− mice showed a robust asthma phenotype and increased susceptibility to asphyxiation induced by allergens. However, whereas the lack of MMP2 reduced the influx of cells into bronchoalveolar lavage (BAL), numerous inflammatory cells accumulated in the lung parenchyma. BAL of MMP2 −/− mice lacked normal chemotactic activity, whereas lung inflammatory cells from the same mice showed appropriate chemotactic responses. Thus, MMP2 establishes the chemotactic gradient required for egression of lung inflammatory cells and prevention of lethal asphyxiation.
The mechanisms that initiate allergic lung inflammation are relevant to expression of diseases such as asthma, but the factors underlying resolution of inflammation are equally important. Previously, we demonstrated the importance of matrix metalloproteinase 2 (MMP2) for airway egression of lung eosinophils, a critical anti-inflammatory mechanism without which mice are rendered highly susceptible to lethal asphyxiation. Here we show that leukocyte MMP9 is the dominant airway MMP controlling inflammatory cell egression. The allergic lung phenotype of MMP9 −/− mice was similar to WT and was not altered by concomitant deletion of the MMP2 gene (double knockout; dko). However, inflammatory cells accumulated aberrantly in the lungs of allergen-challenged MMP9 −/− and dko mice and fewer eosinophils and neutrophils were present in bronchoalveolar lavage. These aberrant cellular trafficking patterns were explained by disruption of transepithelial chemokine gradients, in MMP2 −/− mice affecting only eotaxin (CCL11), but in MMP9 −/− and dko mice involving eotaxin, MARC (CCL7), and TARC (CCL17). Thus, by establishing multiple transepithelial chemokine gradients, MMP9 is broadly implicated in the resolution of allergic inflammation, an essential protective mechanism that overlaps with a more limited role played by MMP2.
Active fungal proteinases are powerful allergens that induce experimental allergic lung disease strongly resembling atopic asthma, but the precise relationship between proteinases and asthma remains unknown. Here, we analyzed dust collected from the homes of asthmatic children for the presence and sources of active proteinases to further explore the relationship between active proteinases, atopy, and asthma. Active proteinases were present in all houses and many were derived from fungi, especially Aspergillus niger. Proteinase-active dust extracts were alone insufficient to initiate asthma-like disease in mice, but conidia of A. niger readily established a contained airway mucosal infection, allergic lung disease, and atopy to an innocuous bystander antigen. Proteinase produced by A. niger enhanced fungal clearance from lung and was required for robust allergic disease. Interleukin 13 (IL-13) and IL-5 were required for optimal clearance of lung fungal infection and eosinophils showed potent anti-fungal activity in vitro. Thus, asthma and atopy may both represent a protective response against contained airway infection due to ubiquitous proteinase-producing fungi.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.