This paper addresses the lack of a commonly used, standard dataset and established benchmarking problems for physical activity monitoring. A new dataset -recorded from 18 activities performed by 9 subjects, wearing 3 IMUs and a HR-monitor -is created and made publicly available. Moreover, 4 classification problems are benchmarked on the dataset, using a standard data processing chain and 5 different classifiers. The benchmark shows the difficulty of the classification tasks and exposes new challenges for physical activity monitoring.
Photoplethysmography (PPG)-based continuous heart rate monitoring is essential in a number of domains, e.g., for healthcare or fitness applications. Recently, methods based on time-frequency spectra emerged to address the challenges of motion artefact compensation. However, existing approaches are highly parametrised and optimised for specific scenarios of small, public datasets. We address this fragmentation by contributing research into the robustness and generalisation capabilities of PPG-based heart rate estimation approaches. First, we introduce a novel large-scale dataset (called PPG-DaLiA), including a wide range of activities performed under close to real-life conditions. Second, we extend a state-of-the-art algorithm, significantly improving its performance on several datasets. Third, we introduce deep learning to this domain, and investigate various convolutional neural network architectures. Our end-to-end learning approach takes the time-frequency spectra of synchronised PPG- and accelerometer-signals as input, and provides the estimated heart rate as output. Finally, we compare the novel deep learning approach to classical methods, performing evaluation on four public datasets. We show that on large datasets the deep learning model significantly outperforms other methods: The mean absolute error could be reduced by 31 % on the new dataset PPG-DaLiA, and by 21 % on the dataset WESAD.
Affect recognition is an interdisciplinary research field bringing together researchers from natural and social sciences. Affect recognition research aims to detect the affective state of a person based on observables, with the goal to, for example, provide reasoning for the person’s decision making or to support mental wellbeing (e.g., stress monitoring). Recently, beside of approaches based on audio, visual or text information, solutions relying on wearable sensors as observables, recording mainly physiological and inertial parameters, have received increasing attention. Wearable systems enable an ideal platform for long-term affect recognition applications due to their rich functionality and form factor, while providing valuable insights during everyday life through integrated sensors. However, existing literature surveys lack a comprehensive overview of state-of-the-art research in wearable-based affect recognition. Therefore, the aim of this paper is to provide a broad overview and in-depth understanding of the theoretical background, methods and best practices of wearable affect and stress recognition. Following a summary of different psychological models, we detail the influence of affective states on the human physiology and the sensors commonly employed to measure physiological changes. Then, we outline lab protocols eliciting affective states and provide guidelines for ground truth generation in field studies. We also describe the standard data processing chain and review common approaches related to the preprocessing, feature extraction and classification steps. By providing a comprehensive summary of the state-of-the-art and guidelines to various aspects, we would like to enable other researchers in the field to conduct and evaluate user studies and develop wearable systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.