Intestinal amebiasis is the disease caused by the extracellular protozoan parasite Entamoeba histolytica (Eh) that induces a dynamic and heterogeneous interaction profile with the host immune system during disease pathogenesis. In 90% of asymptomatic infection, Eh resides with indigenous microbiota in the outer mucus layer of the colon without prompting an immune response. However, for reasons that remain unclear, in a minority of the Eh‐infected individuals, this fine tolerated relationship is switched to a pathogenic phenotype and advanced to an increasingly complex host‐parasite interaction. Eh disease susceptibility depends on parasite virulence factors and their interactions with indigenous bacteria, disruption of the mucus bilayers, and adherence to the epithelium provoking host immune cells to evoke a robust pro‐inflammatory response mediated by inflammatory caspases and inflammasome activation. To understand Eh pathogenicity and innate host immune responses, this review highlights recent advances in our understanding of how Eh induces outside‐in signaling via Mϕs to activate inflammatory caspases and inflammasome to regulate pro‐inflammatory responses.
Microorganisms are known to devise various strategies to thwart protective responses by the host. One such strategy is to incorporate sequences and domains in their genes/proteins that have similarity to various domains of the host proteins. In this study, we report that protein Rv3529c exhibits significant similarity to the death domain of the TLR pathway adaptor protein MyD88. Incubation of macrophages with Rv3529c specifically inhibited TLR2-mediated proinflammatory responses. This included attenuated oxidative burst, reduced phosphorylation of MAPK-ERK, reduced activation of transcription factor NF-κB and reduced secretion of proinflammatory cytokines IFN-γ, IL-6, and IL-17A with a concomitant increased secretion of suppressor cytokines IL-10 and TGF-β. Importantly, Rv3529c significantly inhibited TLR2-induced association of MyD88 with IRAK1 by competitively binding with IRAK1. Further, Rv3529c mediated inhibition of apoptosis and phagosome-lysosome fusion. Lastly, incubation of macrophages with Rv3529c increased bacterial burden inside macrophages. The data presented show another strategy evolved by toward immune evasion that centers on incorporating sequences in proteins that are similar to crucial proteins in the innate immune system of the host.
While Entamoeba histolytica (Eh)-induced pro-inflammatory responses are critical in disease pathogenesis, the downstream signaling pathways that subsequently dampens inflammation and the immune response remains unclear. Eh in contact with macrophages suppresses NF-κB signaling while favoring NLRP3-dependent pro-inflammatory cytokine production by an unknown mechanism. Cullin-1 and cullin-5 (cullin-1/5) assembled into a multi-subunit RING E3 ubiquitin ligase complex are substrates for neddylation that regulates the ubiquitination pathway important in NF-κB activity and pro-inflammatory cytokine production. In this study, we showed that upon live Eh contact with human macrophages, cullin-1/4A/4B/5 but not cullin-2/3, were degraded within 10 minutes. Similar degradation of cullin-1/5 were observed from colonic epithelial cells and proximal colonic loops tissues of mice inoculated with live Eh. Degradation of cullin-1/5 was dependent on Eh-induced activation of caspase-1 via the NLRP3 inflammasome. Unlike cullin-4B, the degradation of cullin-4A was partially dependent on caspase-1 and was inhibited with a pan caspase inhibitor. Cullin-1/5 degradation was dependent on Eh cysteine proteinases EhCP-A1 and EhCP-A4, but not EhCP-A5, based on pharmacological inhibition of the cysteine proteinases and EhCP-A5 deficient parasites. siRNA silencing of cullin-1/5 decreased the phosphorylation of pIκ-Bα in response to Eh and LPS stimulation and downregulated NF-κB-dependent TNF-α mRNA expression and TNF-α and MCP-1 pro-inflammatory cytokine production. These results unravel a unique outside-in strategy employed by Eh to attenuate NF-κB-dependent pro-inflammatory responses via NLRP3 activation of caspase-1 that degraded cullin-1/5 from macrophages.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.