Abstract-Memristors have been suggested as neuromorphic computing elements. Spike-time dependent plasticity and the Hodgkin-Huxley model of the neuron have both been modelled effectively by memristor theory. The d.c. response of the memristor is a current spike. Based on these three facts we suggest that memristors are well-placed to interface directly with neurons. In this paper we show that connecting a spiking memristor network to spiking neuronal cells causes a change in the memristor network dynamics by: removing the memristor spikes, which we show is due to the effects of connection to aqueous medium; causing a change in current decay rate consistent with a change in memristor state; presenting more-linear I − t dynamics; and increasing the memristor spiking rate, as a consequence of interaction with the spiking neurons. This demonstrates that neurons are capable of communicating directly with memristors, without the need for computer translation.
Abstract.Hardware-based Artificial Intelligence (A.I.) has many potential applications in biomedical technology; for example, connecting expert systems to biosensors for real-time physiological monitoring of a range of biomarkers, or interfacing with the brain. We suggest that memristors are well-placed to interface directly with neurons to interconnect between computer hardware and the brain for 3 reasons: memristors are widely-touted as neuromorphic computing elements; memristor theory has been successfully used to model spike-time dependent plasticity and the Hodgkin-Huxley model of the neuron; and, the d.c. response of the memristor is a current spike. In this chapter we show that connecting a spiking memristor network to electrically active neuronal cells causes a change in the memristor network dynamics by: removing the memristor spikes, which we show is due to the effects of connection to aqueous medium; causing a change in current decay rate consistent with a change in memristor state; presenting more-linear I − t dynamics; and increasing the memristor spiking rate, as a consequence of interaction with the active cells. This demonstrates that such cells are capable of communicating directly with memristors, without the need for computer translation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.