The future of organic light-emitting devices (OLEDs) is drifting from electrofluorescence toward electrophosphorescence due to the feasibility of realizing 100% internal quantum efficiency. There is limited availability of transition metals (TMs) such as Ir, Os, and Pt, which are used for color-tunable phosphorescent emitters, and the use of the host-guest strategy is necessary for suppressing the detrimental triplet-triplet annihilation inherently imparted by the TM-centered emitters. The inevitable demands of organic host materials provide organic chemists with tremendous opportunities to contribute their expertise to this technology. With suitable molecular design and judicious selection of chemical structures featured with different electronic nature, the incorporation of hole-transporting (HT) and electron-transporting (ET) moieties combines the advantages of both functional units into bipolar host materials, which perform balanced injection/transportation/recombination of charge carriers and consequentially lead the OLEDs to have higher performances and low roll-off efficiencies. This review highlights recently developed bipolar host materials with the focus on molecular design strategies and the structure-property-performance relationships of various classes of bipolar host materials, which are classified into several categories according to the structural features of their constituents (HT/ET blocks and spacers).
Recently bipolar phosphorescent host materials have attracted wide attention since they can achieve better charge balance and hence better device performance. In this work, we report the synthesis and physical properties of a novel bipolar host material containing the dimesityl borane/carbazole hybrid, CMesB. With a high triplet energy, CMesB is considered a promising universal host material and has been applied to phosphorescent OLEDs of various colors. Red/green/blue/white (RGBW) OLEDs based on CMesB all show high external quantum efficiencies (20.7% for red, 20.0% for green, 16.5% for blue, and 15.7% for white) at practical brightnesses. The results indicate that the bipolar host CMesB with high triplet energy has high potential in manufacturing RGBW OLEDs for display or lighting applications.
By incorporating electron-accepting benzimidazole and electron-donating indolo [3,2-b]carbazole into one molecule, two novel donor-acceptor bipolar host materials, TICCBI and TICNBI, have been synthesized. The photophysical and electrochemical properties of the hybrids can be tuned through the different linkages (C-or N-connectivity) between the electronic donor and acceptor components. The promising physical properties of these two new compounds made them suitable for use as hosts doped with various Ir or Os-based phosphors for realizing highly efficient phosphorescent organic light emitting diodes (PhOLEDs). PhOLEDs using TICCBI and TICNBI as hosts incorporated with Irbased emitters such as green (PPy) 2 Ir(acac), yellow (Bt) 2 Ir(acac), and two new red emitters (35dmPh-6Fiq) 2 Ir(acac) (i3) and (4tBuPh-6Fiq) 2 Ir(acac) (i6) accomplished high external quantum efficiencies ranging from 14 to 16.2%. Nevertheless, the red PhOLED device incorporating TICNBI doped with the red emitter osmium(II) bis[3-(trifluoromethyl)-5-(4-tert-butylpyridyl)-1,2,4-triazolate] dimethylphenylphosphine [Os(bpftz) 2 (PPhMe 2 ) 2 ] achieved a maximum external quantum efficiency, current efficiency, and power efficiency of 22%, 28 cd A À1 , and 22.1 lm W À1 , respectively, with CIE coordinates of (0.65,0.35). The external quantum efficiency remained high (20%) as the brightness reached to 1000 cd m À2 , suggesting balanced charge fluxes within the emitting layer, rendering devices with limited efficiency roll-off.
Abstract. The catalytic performance study of polyindole as a heterogeneous catalyst is reported for the synthesis of 3,3'-arylmethylene-bis-1H-Indole derivatives using various substituted aldehydes and indole under reflux reaction condition with good to excellent yield. Polyindole was synthesized by chemical oxidative polymerization using citric acid as a dopant. The synthesized polymer was well characterized by various spectroscopic techniques like FT-IR, XRD, FESEM, etc. The XRD pattern confirms the partially crystalline nature of polyindole. The FESEM images of polyindole revealed the formation of irregularly shaped particulate nature with size in the range of 0.2 to 6 micron. In FT-IR spectrum, the major peak at ∼ 3400 cm −1 indicates N-H stretching and at 1564−1624 cm −1 indicates C-C stretching of benzenoid ring of indole. The presence of peak at ∼ 3400 cm −1 indicates that the polymerization does not occur at nitrogen. The present protocol has certain advantages like recyclability, low loading of the catalyst, low-cost and efficient use of polyindole as a heterogeneous catalyst.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.