In the present paper, we have investigated the static properties of the mixed ionic crystal NH4Cl1−xBrx using three-body potential model (TBPM) by the application of Vegard's law. The results for the mixed crystal counterparts are also in fair agreement with the pseudo-experimental data generated from the application of Vegard's law. The results for the end point members (x = 0 and 1) are in good agreement with the experimental data. The results on compressibility, molecular force constant, infrared absorption frequencies and Debye temperature are presented probably for the first time for these mixed crystal counterparts.
We have predicted the phase transition pressures and corresponding relative volume changes of EuO and EuS having NaCl-type structure under high pressure using three-body interaction potential (TBIP) approach. In addition, the conditions for relative stability in terms of modified Born criterion has been checked. Our calculated results of phase transitions, volume collapses and elastic behaviour of these compounds are found to be close to the experimental results. This shows that the inclusion of three-body interaction effects makes the present model suitable for high pressure studies.
We have carried out high pressure theoretical structural studies of yttrium nitride to examine the phase transition phenomena from the NaCl structure to CsCl structure by using a three-body potential model. The phase transition pressure (140 GPa) predicted by this approach is close to the phase transition pressure, predicted by others (138 GPa). Yttrium nitride is a novel and less explored material. Under high pressure yttrium nitride goes through a sudden collapse in volume showing the first order phase transition. To understand the effect of pressure we studied bulk properties, elastic constants and their combination. The pressure volume equation of state provides meaningful signatures of physical and chemical phenomena under high pressure. Moreover we have successfully checked the stability criterion for this compound.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.