A free energy functional for a crystal that contains both the symmetry conserved and symmetry broken parts of the direct pair correlation function has been used to investigate the crystallization of fluids in three-dimensions. The symmetry broken part of the direct pair correlation function has been calculated using a series in ascending powers of the order parameters and which contains three-and higher-bodies direct correlation functions of the isotropic phase. It is shown that a very accurate description of freezing transitions for a wide class of potentials is found by considering the first two terms of this series. The results found for freezing parameters including structure of the frozen phase for fluids interacting via the inverse power potential u(r) = ǫ (σ/r) n for n ranging from 4 to ∞ are in very good agreement with simulation results. It is found that for n > 6.5 the fluid freezes into a face centred cubic (fcc) structure while for n ≤ 6 the body centred cubic (bcc) structure is preferred. The fluid-bcc-fcc triple point is found to be at 1/n = 0.158 which is in good agreement with simulation result.
A free-energy functional that contains both the symmetry conserved and symmetry broken parts of the direct pair correlation function has been used to investigate the freezing of a system of hard spheres into crystalline and amorphous structures. The freezing parameters for fluid-crystal transition have been found to be in very good agreement with the results found from simulations.We considered amorphous structures found from the molecular dynamics simulations at packing fractions η lower than the glass close packing fraction η J and investigated their stability compared to that of a homogeneous fluid. The existence of free-energy minimum corresponding to a density distribution of overlapping Gaussians centered around an amorphous lattice depicts the deeply supercooled state with a heterogeneous density profile.
DNA-mediated self-assembly of colloids has emerged as a powerful tool to assemble the materials of prescribed structure and properties. The uniqueness of the approach lies in the sequence-specific, thermo-reversible hybridization of the DNA-strands based on Watson–Crick base pairing. Grafting particles with DNA strands, thus, results into building blocks that are fully programmable, and can, in principle, be assembled into any desired structure. There are, however, impediments that hinder the DNA-grafted particles from realizing their full potential, as building blocks, for programmable self-assembly. In this short review, we focus on these challenges and highlight the research around tackling these challenges.
A method for calculating pair correlation functions in a crystal is developed. The method is based on separating the one-and two-particle correlation functions into the symmetry conserving and the symmetry broken parts. The conserving parts are calculated using the integral equation theory of homogeneous fluids. The symmetry broken part of the direct pair correlation function is calculated from a series written in powers of order parameters and that of the total pair correlation function from the Ornstein-Zernike equation. The results found for a two-dimensional hexagonal lattice show that the method provides accurate and detailed informations about the pair correlation functions in a crystal.
Various biological processes involve the translocation of macromolecules across nanopores; these pores are basically protein channels embedded in membranes. Understanding the mechanism of translocation is crucial to a range of technological applications, including DNA sequencing, single molecule detection, and controlled drug delivery. In this spirit, numerous efforts have been made to develop polymer translocation-based sequencing devices, these efforts include findings and insights from theoretical modeling, simulations, and experimental studies. As much as the past and ongoing studies have added to the knowledge, the practical realization of low-cost, high-throughput sequencing devices, however, has still not been realized. There are challenges, the foremost of which is controlling the speed of translocation at the single monomer level, which remain to be addressed in order to use polymer translocation-based methods for sensing applications. In this article, we review the recent studies aimed at developing control over the dynamics of polymer translocation through nanopores.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.