Magnetic Resonance Imaging (MRI) systems need a material compatible with the imaging technique with lesser attenuation and provide accurate images without distortion. Carbon fibers are the best-suited materials for x-ray applications because of their radiolucent properties and reduced attenuation characteristics. However, carbon fiber produces images with distortion in the MRI system by absorbing electromagnetic energy because of its conductive nature. In the present study, five different fiber-reinforced radiolucent composite plates are analyzed to predict their suitability for a radio frequency coil and the effect of a primary magnetic field of 1.5 T and 3.0 T on mechanical responses. Simulation models are built to explore the impact of electromagnetic waves and birdcage coil configurations on composite material and quantify the temperature changes caused due to energy absorption. A multiphysics coupling simulation is being used to understand the effect of stacking sequence, ply orientation, and boundary conditions on the response of composite plates under an electro-magneto-mechanical environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.