We propose a test of local realism based on correlation measurements of continuum valued functions of positions and momenta, known as modular variables. The Wigner representations of these observables are bounded in phase space and therefore, the associated inequality holds for any state described by a non-negative Wigner function. This agrees with Bell's remark that positive Wigner functions, serving as a valid probability distribution over local (hidden) phase space coordinates, do not reveal non-locality. We construct a class of entangled states resulting in a violation of the inequality and thus truly demonstrate non-locality in phase space. The states can be realized through grating techniques in space-like separated interferometric setups. The non-locality is verified from the spatial correlation data that is collected from the screens. arXiv:1508.04588v2 [quant-ph] 9 Dec 2015
Certifying individual quantum devices with minimal assumptions is crucial for the development of quantum technologies. Here, we investigate how to leverage single-system contextuality to realize self-testing. We develop a robust self-testing protocol based on the simplest contextuality witness for the simplest contextual quantum system, the Klyachko-Can-Binicioğlu-Shumovsky (KCBS) inequality for the qutrit. We establish a lower bound on the fidelity of the state and the measurements (to an ideal configuration) as a function of the value of the witness under a pragmatic assumption on the measurements we call the KCBS orthogonality condition. We apply the method in an experiment with randomly chosen measurements on a single trapped 40 Ca + and near-perfect detection efficiency. The observed statistics allow us to self-test the system and provide the first experimental demonstration of quantum self-testing of a single system. Further, we quantify and report that deviations from our assumptions are minimal, an aspect previously overlooked by contextuality experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.