Abstract:In this study, land-cover change in the capital Conakry of Guinea was simulated using the integrated Cellular Automata and Markov model (CA-Markov) in the Geographic Information System (GIS) and Remote Sensing (RS). Historical land-cover change information was derived from 1986, 2000 and 2016 Landsat data. Using the land-cover change maps of 1986 and 2000, the land-cover change map for 2016 was simulated based on the Markov model in IDRISSI software (Clark University, Worcester, MA, USA). The simulated result was compared with the 2016 land-cover map for validation using the Relative Operating Characteristic (ROC). The ROC result showed a very strong agreement between the two maps. From this result, the land-cover change map for 2025 was simulated using CA-Markov model. The result has indicated that the proportion of the urban area was 49% in 2016, and it is expected to increase to 52% by 2025, while vegetation will decrease from 35% in 2016 to 32% in 2025. This study suggests that the rapid land-cover change has been led by both rapid population growth and extreme poverty in rural areas, which will result in migration into Conakry. The results of this study will provide bases for assessing the sustainability and the management of the urban area and for taking actions to mitigate the degradation of the urban environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.