In order to meet tight product quality specifications for batch/semi-batch processes, it is vital to monitor and control product quality throughout the batch duration. The ideal strategy is to achieve end-product quality specifications through trajectory tracking control during a batch run. However, due to the lack of in-situ sensors for continuous monitoring of batch product quality, the measurements are usually implemented by laboratory assays and are inherently intermittent. Therefore, direct trajectory tracking of batch product quality is challenging in such applications. This paper proposes a practical approach to realise trajectory tracking control of batch product quality in those situations where only intermittent measurements are available. The first step of the approach consists in identifying a projection to latent structures (PLS) model to identify a relationship between readily measured process variable trajectories and intermittently measured batch product quality. Then the identified PLS-based prediction model is transformed into recursive formulation by utilising missing data imputation algorithms. Such recursive formulation allows identified PLS-based model to be readily incorporated as a predictor into standard model predictive control (MPC) framework. Case study employing simulated fed-batch fermentation process used to manufacture penicillin was employed to illustrate the principle and the e↵ectiveness of the proposed approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.